小编k_t*_*der的帖子

具有顺序数据的 Keras conv1D 的输入形状

我想使用 Conv1D 将扩张卷积网络制作为顺序数据集。
所以我尝试使用 Boston 数据集进行 Conv1D。

from tensorflow.python.keras.layers import Conv1D, MaxPooling2D
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Input, Dense
from tensorflow.python.keras.models import Model
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

boston = load_boston()
df = pd.DataFrame(boston.data,columns=boston.feature_names)
df['target']= boston.target
y = df['target']
X = df.drop(columns=['target'])
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=2)

def NN_model(data= X_train):
  #data = np.expand_dims(data, axis=2)
  inputs = Input(((data.shape)))
  x = Conv1D(2,2,dilation_rate=2,padding="same", activation="relu")(inputs)
  x = Flatten()(x)
  x = Dense(2048, activation="relu")(x)
  predictions = Dense(1)(x) …
Run Code Online (Sandbox Code Playgroud)

python keras

1
推荐指数
1
解决办法
1323
查看次数

标签 统计

keras ×1

python ×1