在Keras文档中的培训示例中,
https://keras.io/getting-started/sequential-model-guide/#training
使用binary_crossentropy,并在网络的最后一层添加了乙状结肠激活,但是是否有必要在网络的最后一层中加入乙状结肠?正如我在源代码中发现的:
def binary_crossentropy(output, target, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
output: A tensor.
target: A tensor with the same shape as `output`.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
# Note: nn.softmax_cross_entropy_with_logits
# expects logits, Keras expects probabilities.
if not from_logits:
# transform back to logits
epsilon = _to_tensor(_EPSILON, output.dtype.base_dtype) …Run Code Online (Sandbox Code Playgroud)