我想知道返回的分数与如下计算GridSearchCV的R2度量之间的差异。在其他情况下,我收到的网格搜索分数非常负面(同样适用于cross_val_score),我将不胜感激解释它是什么。
from sklearn import datasets
from sklearn.model_selection import (cross_val_score, GridSearchCV)
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import accuracy_score, r2_score
from sklearn import tree
diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]
X = pd.DataFrame(X)
parameters = {'splitter':('best','random'),
'max_depth':np.arange(1,10),
'min_samples_split':np.arange(2,10),
'min_samples_leaf':np.arange(1,5)}
regressor = GridSearchCV(DecisionTreeRegressor(), parameters, scoring = 'r2', cv = 5)
regressor.fit(X, y)
print('Best score: ', regressor.best_score_)
best = regressor.best_estimator_
print('R2: ', r2_score(y_pred = best.predict(X), y_true = y))
Run Code Online (Sandbox Code Playgroud) 我想计算图形的平均聚类系数(从igraph包中)。但是,我不确定应该采用哪种方法。
library(igraph)
graph <- erdos.renyi.game(10000, 10000, type = "gnm")
# Global clustering coefficient
transitivity(graph)
# Average clustering coefficient
transitivity(graph, type = "average")
# The same as above
mean(transitivity(graph, type = "local"), na.rm = TRUE)
Run Code Online (Sandbox Code Playgroud)
我将不胜感激。
我想送一份:heart:带有硒的表情符号send_keys()
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
driver = webdriver.Chrome('./chromedriver')
driver.get("https://web.whatsapp.com/")
wait = WebDriverWait(driver, 600)
message = driver.find_elements_by_xpath('//*[@id="main"]/footer/div[1]/div[2]/div/div[2]')[0]
message.send_keys(":heart:")
Run Code Online (Sandbox Code Playgroud)
但是,这不起作用并发送字符串':heart:'.
你能否建议如何正确地做到这一点?
我想将回归线的颜色更改为不同的颜色.我发现了关于联合图的类似问题,但据我所知,它与配对图不相似.我附上一个例子:
import seaborn as sns;
sns.set(style="ticks", color_codes=True)
iris = sns.load_dataset("iris")
g = sns.pairplot(iris, kind="reg")
Run Code Online (Sandbox Code Playgroud) 我想在使用seaborn.
import numpy as np
import seaborn as sns
x = np.random.standard_normal(1000)
sns.distplot(x, kde = False)
Run Code Online (Sandbox Code Playgroud)
任何帮助,将不胜感激!
python ×4
seaborn ×2
distribution ×1
grid-search ×1
igraph ×1
matplotlib ×1
r ×1
scikit-learn ×1
selenium ×1