我只是尝试使用Apache Spark ml库进行Logistic回归,但每当我尝试它时,都会出现一条错误消息,例如
"ERROR OWLQN:失败!重置历史:breeze.optimize.NaNHistory:"
逻辑回归数据集的示例如下:
+-----+---------+---------+---------+--------+-------------+
|state|dayOfWeek|hourOfDay|minOfHour|secOfMin| features|
+-----+---------+---------+---------+--------+-------------+
| 1.0| 7.0| 0.0| 0.0| 0.0|(4,[0],[7.0])|
Run Code Online (Sandbox Code Playgroud)
逻辑回归的代码如下:
//Data Set
StructType schema = new StructType(
new StructField[]{
new StructField("state", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("dayOfWeek", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("hourOfDay", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("minOfHour", DataTypes.DoubleType, false, Metadata.empty()),
new StructField("secOfMin", DataTypes.DoubleType, false, Metadata.empty())
});
List<Row> dataFromRDD = bucketsForMLs.map(p -> {
return RowFactory.create(p.label(), p.features().apply(0), p.features().apply(1), p.features().apply(2), p.features().apply(3));
}).collect();
Dataset<Row> stateDF = sparkSession.createDataFrame(dataFromRDD, schema);
String[] featureCols = new String[]{"dayOfWeek", "hourOfDay", "minOfHour", "secOfMin"};
VectorAssembler vectorAssembler …Run Code Online (Sandbox Code Playgroud) java hadoop logistic-regression apache-spark apache-spark-ml