我已经生成了这样的 OpenCV 图像
从最后一行代码开始,如何分别裁剪并显示当前图像中的每个字符?
代码
labels = measure.label(thresh, connectivity=2, background=0)
charCandidates = np.zeros(thresh.shape, dtype="uint8")
for label in np.unique(labels):
if label == 0:
continue
labelMask = np.zeros(thresh.shape, dtype="uint8")
labelMask[labels == label] = 255
cnts = cv2.findContours(labelMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
(boxX, boxY, boxW, boxH) = cv2.boundingRect(c)
aspectRatio = boxW / float(boxH)
solidity = cv2.contourArea(c) / float(boxW * boxH)
heightRatio = boxH / float(crop_frame.shape[0])
keepAspectRatio = aspectRatio < 1.0
keepSolidity = solidity > …Run Code Online (Sandbox Code Playgroud) 我有裁剪图像的短代码,我标记的文件夹中的所有图像都使用 opencv 保存为 csv,如下所示:
import os, sys
from PIL import Image
import cv2
import pandas as pd
# The annotation file consists of image names, text label,
# bounding box information like xmin, ymin, xmax and ymax.
ANNOTATION_FILE = 'data/annot_crop_plate.csv'
df = pd.read_csv(ANNOTATION_FILE)
#image directory path
IMG_DIR = 'data/images'
# The cropped images will be stored here
CROP_DIR = 'data/crops'
files = df['filename']
size = (200,200)
for file in files:
print(file)
img = cv2.imread(IMG_DIR +'/' + file)
annot_data = df[df['filename'] …Run Code Online (Sandbox Code Playgroud)