你好,我正在做一个GridSearchCV,我打印与结果.cv_results_的功能scikit learn。
我的问题是,当我手动评估所有测试分数分割的平均值时,我得到的数字与'mean_test_score'. 与标准有np.mean()什么不同?
我在此附上带有结果的代码:
n_estimators = [100]
max_depth = [3]
learning_rate = [0.1]
param_grid = dict(max_depth=max_depth, n_estimators=n_estimators, learning_rate=learning_rate)
gkf = GroupKFold(n_splits=7)
grid_search = GridSearchCV(model, param_grid, scoring=score_auc, cv=gkf)
grid_result = grid_search.fit(X, Y, groups=patients)
grid_result.cv_results_
Run Code Online (Sandbox Code Playgroud)
这个操作的结果是:
{'mean_fit_time': array([ 8.92773601]),
'mean_score_time': array([ 0.04288721]),
'mean_test_score': array([ 0.83490629]),
'mean_train_score': array([ 0.95167036]),
'param_learning_rate': masked_array(data = [0.1],
mask = [False],
fill_value = ?),
'param_max_depth': masked_array(data = [3],
mask = [False],
fill_value = ?),
'param_n_estimators': masked_array(data = [100],
mask …Run Code Online (Sandbox Code Playgroud)