小编del*_*pat的帖子

H2O:使用深度学习网格构建集成模型时出现 NullPointerException 错误

我正在尝试使用 R(版本 3.3.3)和 h2o 中的深度学习(版本 3.10.5.1)构建堆叠集成模型来预测商家流失。响应变量是二进制的。目前,我正在尝试运行代码以使用网格搜索开发的前 5 个模型构建堆叠集成模型。但是,当代码运行时,我得到 java.lang.NullPointerException 错误,输出如下:

java.lang.NullPointerException
    at hex.StackedEnsembleModel.checkAndInheritModelProperties(StackedEnsembleModel.java:265)
    at hex.ensemble.StackedEnsemble$StackedEnsembleDriver.computeImpl(StackedEnsemble.java:115)
    at hex.ModelBuilder$Driver.compute2(ModelBuilder.java:173)
    at water.H2O$H2OCountedCompleter.compute(H2O.java:1349)
    at jsr166y.CountedCompleter.exec(CountedCompleter.java:468)
    at jsr166y.ForkJoinTask.doExec(ForkJoinTask.java:263)
    at jsr166y.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:974)
    at jsr166y.ForkJoinPool.runWorker(ForkJoinPool.java:1477)
    at jsr166y.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)
Run Code Online (Sandbox Code Playgroud)

下面是我用来进行超参数网格搜索和构建集成模型的代码:

hyper_params <- list(
                  activation=c("Rectifier","Tanh","Maxout","RectifierWithDropout","TanhWithDropout","MaxoutWithDropout"),
                  hidden=list(c(50,50),c(30,30,30),c(32,32,32,32,32),c(64,64,64,64,64),c(100,100,100,100,100)),
                  input_dropout_ratio=seq(0,0.2,0.05),
                  l1=seq(0,1e-4,1e-6),
                  l2=seq(0,1e-4,1e-6),
                  rho = c(0.9,0.95,0.99,0.999),
                  epsilon=c(1e-10,1e-09,1e-08,1e-07,1e-06,1e-05,1e-04)
                )

search_criteria <- list(
                      strategy = "RandomDiscrete",
                      max_runtime_secs = 3600,
                      max_models = 100,
                      seed=1234,
                      stopping_metric="misclassification",      
                      stopping_tolerance=0.01,                  
                      stopping_rounds=5
                    )

dl_ensemble_grid <- h2o.grid(
                          hyper_params = hyper_params,
                          search_criteria = search_criteria,
                          algorithm="deeplearning",
                          grid_id = "final_grid_ensemble_dl",
                          x=predictors,
                          y=response,
                          training_frame = h2o.rbind(train, valid, test), …
Run Code Online (Sandbox Code Playgroud)

java r deep-learning h2o

5
推荐指数
1
解决办法
1683
查看次数

标签 统计

deep-learning ×1

h2o ×1

java ×1

r ×1