我正在尝试运行 cv2,当我尝试导入它时,我得到了
ImportError: libGL.so.1: cannot open shared object file: No such file or directory
在线建议的解决方案是安装
apt install libgl1-mesa-glx
但这已经安装并且是最新版本。任何帮助都会非常有帮助。提前致谢。
我正在运行Keras模型,提交截止日期为36小时,如果我在cpu上训练我的模型需要大约50个小时,有没有办法在gpu上运行Keras?
我正在使用Tensorflow后端并在我的Jupyter笔记本上运行它,没有安装anaconda.
我试图从我训练过的模型中保存和加载重量.
用于保存模型的代码是.
TensorBoard(log_dir='/output')
model.fit_generator(image_a_b_gen(batch_size), steps_per_epoch=1, epochs=1)
model.save_weights('model.hdf5')
model.save_weights('myModel.h5')
Run Code Online (Sandbox Code Playgroud)
如果这是一种不正确的方式,或者是否有更好的方法,请告诉我.
但当我尝试加载它们时,使用它,
from keras.models import load_model
model = load_model('myModel.h5')
Run Code Online (Sandbox Code Playgroud)
但我得到这个错误:
ValueError Traceback (most recent call
last)
<ipython-input-7-27d58dc8bb48> in <module>()
1 from keras.models import load_model
----> 2 model = load_model('myModel.h5')
/home/decentmakeover2/anaconda3/lib/python3.5/site-
packages/keras/models.py in load_model(filepath, custom_objects, compile)
235 model_config = f.attrs.get('model_config')
236 if model_config is None:
--> 237 raise ValueError('No model found in config file.')
238 model_config = json.loads(model_config.decode('utf-8'))
239 model = model_from_config(model_config,
custom_objects=custom_objects)
ValueError: No model found in config file.
Run Code Online (Sandbox Code Playgroud)
关于我可能做错什么的任何建议?先感谢您.
我试图运行keras模型,尝试使用预先训练的VGGnet-当我运行此命令
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_rows, img_cols, img_channel))
我收到此错误:
``------------------------------------------------------------------
---------
ImportError Traceback (most recent call
last)
<ipython-input-79-9b18deb3bc0f> in <module>()
1
----> 2 base_model = applications.VGG16(weights='imagenet',
include_top=False, input_shape=(img_rows, img_cols, img_channel))
/usr/local/lib/python3.5/dist-packages/keras/applications/vgg16.py in
VGG16(include_top, weights, input_tensor, input_shape, pooling,
classes)
167 WEIGHTS_PATH_NO_TOP,
168 cache_subdir='models')
--> 169 model.load_weights(weights_path)
170 if K.backend() == 'theano':
171 layer_utils.convert_all_kernels_in_model(model)
/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py in
load_weights(self, filepath, by_name)
2563 """
2564 if h5py is None:
-> 2565 raise ImportError('`load_weights` requires h5py.')
2566 f = h5py.File(filepath, mode='r')
2567 if 'layer_names' not in …
Run Code Online (Sandbox Code Playgroud) class torch.FloatStorage[source]
byte()
Casts this storage to byte type
char()
Casts this storage to char type
Run Code Online (Sandbox Code Playgroud)
我正在尝试完成一些文档,我设法获得了如上所示的格式,但我不确定如何提供该函数末尾的源代码链接!该链接将人带到包含代码的文件,但我不知道该怎么做,
我有一个模型文件,看起来像这样
OrderedDict([('inp.conv1.conv.weight',
(0 ,0 ,0 ,.,.) =
-1.5073e-01 6.4760e-02 1.9156e-01
1.2175e-01 3.5886e-02 1.3992e-01
-1.5903e-01 8.2055e-02 1.7820e-01
(0 ,0 ,1 ,.,.) =
1.0604e-01 -1.3653e-01 1.4803e-01
6.0276e-02 -1.4674e-02 2.3059e-06
-6.2192e-02 -5.1061e-03 -7.4145e-03
(0 ,0 ,2 ,.,.) =
-5.5632e-02 3.5326e-02 6.5108e-02
1.1411e-01 -4.4160e-02 8.2610e-02
8.9979e-02 -3.5454e-02 4.2549e-02
(1 ,0 ,0 ,.,.) =
4.8523e-02 -4.3961e-02 5.3614e-02
-1.2644e-01 1.2777e-01 8.9547e-02
3.8392e-02 2.7016e-02 -1.4552e-01
(1 ,0 ,1 ,.,.) =
9.5537e-02 2.8748e-02 3.9772e-02
-6.2410e-02 1.1264e-01 7.8663e-02
-2.6374e-02 1.4401e-01 -1.7109e-01
(1 ,0 ,2 ,.,.) =
5.1791e-02 -1.6388e-01 -1.7605e-01 …
Run Code Online (Sandbox Code Playgroud) 我正在尝试训练一个网络,但我得到了,我将批量大小设置为 300,并且收到此错误,但即使我将其减少到 100,我仍然收到此错误,更令人沮丧的是,在 ~1200 个图像上运行 10 epoch大约需要 40 分钟,请提出问题所在以及如何加快该过程!任何提示都会非常有帮助,提前致谢。
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-31-3b43ff4eea72> in <module>()
5 labels = Variable(labels).cuda()
6
----> 7 optimizer.zero_grad()
8 outputs = cnn(images)
9 loss = criterion(outputs, labels)
/usr/local/lib/python3.5/dist-packages/torch/optim/optimizer.py in zero_grad(self)
114 if p.grad is not None:
115 if p.grad.volatile:
--> 116 p.grad.data.zero_()
117 else:
118 data = p.grad.data
RuntimeError: cuda runtime error (2) : out of memory at /pytorch /torch/lib/THC/generic/THCTensorMath.cu:35`
Run Code Online (Sandbox Code Playgroud)
即使我的 GPU 是免费的
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.111 Driver Version: 384.111 | …
Run Code Online (Sandbox Code Playgroud) 尝试为多标签分类编写焦点损失
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=0.25):
self._gamma = gamma
self._alpha = alpha
def forward(self, y_true, y_pred):
cross_entropy_loss = torch.nn.BCELoss(y_true, y_pred)
p_t = ((y_true * y_pred) +
((1 - y_true) * (1 - y_pred)))
modulating_factor = 1.0
if self._gamma:
modulating_factor = torch.pow(1.0 - p_t, self._gamma)
alpha_weight_factor = 1.0
if self._alpha is not None:
alpha_weight_factor = (y_true * self._alpha +
(1 - y_true) * (1 - self._alpha))
focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor *
cross_entropy_loss)
return focal_cross_entropy_loss.mean()
Run Code Online (Sandbox Code Playgroud)
但是当我运行这个时,我得到
File "train.py", line 82, …
Run Code Online (Sandbox Code Playgroud) 我已经显示了下面的代码,但是当我尝试执行它时,得到
Traceback (most recent call last):
File "/home/decentmakeover2/Code/cv.py", line 22, in <module>
img = cv2.circle(img,center, radius, (0,255, 0), 2)
TypeError: integer argument expected, got float
Run Code Online (Sandbox Code Playgroud)
我不确定问题是什么,minEnclosingCircle
值已转换为int
,但我仍然遇到相同的错误,关于可能是什么问题的任何想法?
import numpy as np
import cv2
import os
from scipy import ndimage
img = cv2.pyrDown(cv2.imread('img.jpeg'))
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
image, contours, heir = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
x, y , w, h = cv2.boundingRect(c)
cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2)
rect …
Run Code Online (Sandbox Code Playgroud) 我正在尝试解决一个回归问题,这是一个带有 8 个标签的多标签,我正在使用均方误差损失,但是数据集不平衡,我想将权重传递给损失函数。目前我正在编译这个模型道路。
model.compile(loss='mse', optimizer=Adam(lr=0.0001), metrics=['mse', 'acc'])
Run Code Online (Sandbox Code Playgroud)
有人可以建议是否可以为均方误差添加权重,如果可以,我该怎么做?
提前致谢
标签看起来像这样
#model = Sequential()
model.add(effnet)
model.add(GlobalAveragePooling2D())
model.add(Dropout(0.5))
model.add(Dense(8,name = 'nelu', activation=elu))
model.compile(loss=custom_mse(class_weights),
optimizer=Adam(lr=0.0001), metrics=['mse', 'acc'])
Run Code Online (Sandbox Code Playgroud) python ×5
keras ×4
pytorch ×3
tensorflow ×2
gpu ×1
jupyter ×1
nvidia ×1
opencv ×1
ubuntu-14.04 ×1