在以下代码中,我从tensorflow教程(官方)中修改了Deep MNIST示例。
修改-将重量衰减添加到损失函数中,并且还修改了重量。(如果它不正确,请告诉我)。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
from hyperopt import STATUS_OK, STATUS_FAIL
Flags2=None
def build_and_optimize(hp_space):
global Flags2
Flags2 = {}
Flags2['dp'] = hp_space['dropout_global']
Flags2['wd'] = hp_space['wd']
res = main(Flags2)
results = {
'loss': res,
'status': STATUS_OK
}
return results
def deepnn(x):
"""deepnn builds the graph for a deep net for classifying digits.
args:
x: an input tensor with the dimensions …Run Code Online (Sandbox Code Playgroud) 以下是评估训练高斯过程 (GP) 并用于对来自 MNIST 数据集的图像进行分类的代码。
import numpy as np
from sklearn.metrics.classification import accuracy_score, log_loss
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets
from sklearn.datasets import fetch_mldata
import random
SAMPLE_SIZE = 2000
def build_and_optimize(hp_space):
build_train()
return
def build_train(hp_space):
l_scale = hp_space['l_scale']
bias = hp_space['bias']
gp_fix = GaussianProcessClassifier(kernel=bias * RBF(length_scale=l_scale), optimizer=None, multi_class='one_vs_rest')
X_train, X_test, y_train, y_test = prepare_data()
gp_fix.fit(X_train, y_train)
print("Log Marginal Likelihood (initial): %.3f"
% gp_fix.log_marginal_likelihood(gp_fix.kernel_.theta))
y_ = gp_fix.predict(X_test[0:500])
print(y_)
print(y_test[0:500])
print("Accuracy: %.3f (initial)"
% (accuracy_score(y_test[0:500], y_))) …Run Code Online (Sandbox Code Playgroud)