嗨,我是Keras的新手,有后端张量流.我已经构建了两个可能类的图像的训练和验证集; 我的网络必须以两个类是或否结束.我使用ImageDatagenerator从文件夹中读取图像并准备培训和验证集.最后,我得到了标题中描述的问题.我的猜测是ImageDatagenerator没有像我想的那样准备数据; 任何机构都可以向我解释如何解决它,这里是代码(谢谢):
# Data Preparation
# dimensions of our images.
img_width, img_height = 256, 256
#top_model_weights_path = 'bottleneck_fc_model.h5'
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 2
nb_validation_samples = 2
epochs = 50
batch_size = 1
num_classes = 2
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
data_format=K.image_data_format(),
horizontal_flip=True)
test_datagen = ImageDataGenerator(
rescale=1. / 255,
data_format=K.image_data_format())
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
# create …Run Code Online (Sandbox Code Playgroud)