小编Alp*_*a12的帖子

keras:未启用急切执行时,张量对象不可迭代

我正在用 Keras 编写一个序列到序列模型。由于某种原因,当我尝试在下面的函数中定义模型时:

def define_GRU_models(encoder_input_dim,
              output_dim,
              activation,
              n_units):
# define training encoder #
###########################
# layer 1
encoder_inputs = Input(shape=encoder_input_dim)
l1_encoder = GRU(n_units,
                      name='l1_encoder',
                      return_sequences=True,
                      return_state=True)
l1_encoder_outputs, l1_encoder_state = l1_encoder(encoder_inputs)

# layer 2
l2_encoder = GRU(n_units,
                      name='l2_encoder',
                      return_state=True)
l2_encoder_outputs, l2_encoder_state = l2_encoder(l1_encoder_outputs)

# define training decoder #
###########################

# layer 1
decoder_inputs = Input(shape=(None, output_dim))
l1_decoder_gru = GRU(int(n_units/2),
                          name='l1_decoder_gru',
                          return_sequences=True,
                          return_state=False)
l1_decoder_outputs, _ = l1_decoder_gru(decoder_inputs)

# layer 2
l2_decoder_gru = GRU(n_units,
                          name='l2_decoder_gru',
                          return_sequences=True,
                          return_state=False)
l2_decoder_outputs, _ = l2_decoder_gru(l1_decoder_outputs, initial_state=l1_encoder_state)

# …
Run Code Online (Sandbox Code Playgroud)

python machine-learning keras tensorflow recurrent-neural-network

1
推荐指数
1
解决办法
4408
查看次数