小编Mak*_*iii的帖子

避免 django 中的 /accounts/login/?next

urls.py

#...
from myapp.views import MyView
from django.contrib.auth.decorators import login_required


urlpatterns = [
    #....
    url(r'^terminator/', login_required(MyView.as_view()), name='sexy')
    
]
Run Code Online (Sandbox Code Playgroud)

视图.py

class MyView(View):
    
    
    def get(self, request):
        return render(request, 'itworks.html')
    
Run Code Online (Sandbox Code Playgroud)

我正在MyView通过Somelogin重定向到“terminator url”的类访问类。但问题是:django 将我重定向到以下 url http://127.0.0.1:8000/accounts/login/?next=/terminator

当然,这个地址没有定义,给了我 404。

LOGIN_REDIRECT_URL在设置中进行了操作,但这只会给代码带来更多混乱。那么有没有办法避免 django 中的这种“默认/下一个”并直接转到http://127.0.0.1:8000/terminator.

python django

5
推荐指数
2
解决办法
4034
查看次数

Removing columns with sklearn's OneHotEncoder

from sklearn.preprocessing import LabelEncoder as LE, OneHotEncoder as OHE
import numpy as np

a = np.array([[0,1,100],[1,2,200],[2,3,400]])


oh = OHE(categorical_features=[0,1])
a = oh.fit_transform(a).toarray()
Run Code Online (Sandbox Code Playgroud)

Let's assume first and second column are categorical data. This code does one hot encoding, but for the regression problem, I would like to remove first column after encoding categorical data. In this example, there are two and I could do it manually. But what if you have many categorical features, how would you solve this problem?

python scikit-learn categorical-data

2
推荐指数
1
解决办法
2753
查看次数

sklearn Standardscaler()可以影响测试矩阵的结果

我不是来自统计数据,但是通过机器学习和NN的一项工作,我看到缩放数据会产生很多伤害.根据我的经验,在列车测试之前缩放数据并不是一个好的选择,但请在列车测试分离后进行缩放时查看此示例.

import numpy as np
from sklearn.preprocessing import StandardScaler


train_matrix = np.array([[1,2,3,4,5]]).T

test_matrix = np.array([[1]]).T


e =StandardScaler()
train_matrix = e.fit_transform(train_matrix)
test_matrix = e.fit_transform(test_matrix)

print(train_matrix)

print(test_matrix)

[out]:

[[-1.41421356]   #train data
 [-0.70710678]
 [ 0.        ]
 [ 0.70710678]
 [ 1.41421356]]


[[ 0.]]   #test data
Run Code Online (Sandbox Code Playgroud)

StandardScaler类将为每个数据集执行两个不同的缩放过程,并且可能损害您的NN结果的错误是:

在列车矩阵1中是-1.41421356,而在测试矩阵1中是0.现在想象你做一个带有训练权重测试数据的预测模型.对于1,您将收到完全不同的结果.怎么克服这个?

python statistics neural-network scikit-learn

2
推荐指数
1
解决办法
617
查看次数