小编C D*_*amo的帖子

为 TFliteconverter 创建代表性数据集的正确方法是什么?

我试图推断tinyYOLO-V2INT8重量和激活。我可以使用 TFliteConverter 将权重转换为 INT8。对于INT8激活,我必须给出代表性数据集来估计缩放因子。我创建此类数据集的方法似乎是错误的。

正确的程序是什么?

def rep_data_gen():
    a = []
    for i in range(160):
        inst = anns[i]
        file_name = inst['filename']
        img = cv2.imread(img_dir + file_name)
        img = cv2.resize(img, (NORM_H, NORM_W))
        img = img / 255.0
        img = img.astype('float32')
        a.append(img)
    a = np.array(a)
    print(a.shape) # a is np array of 160 3D images
    img = tf.data.Dataset.from_tensor_slices(a).batch(1)
    for i in img.take(BATCH_SIZE):
        print(i)
        yield [i]
# https://www.tensorflow.org/lite/performance/post_training_quantization
converter = tf.lite.TFLiteConverter.from_keras_model_file("./yolo.h5")
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type …
Run Code Online (Sandbox Code Playgroud)

dataset tensorflow tensorflow-lite

11
推荐指数
1
解决办法
5240
查看次数

标签 统计

dataset ×1

tensorflow ×1

tensorflow-lite ×1