我一直在尝试绘制每个条形图上带有值标签的条形图。我已经到处搜索但无法完成此操作。我的 df 是下面这个。
Pillar %
Exercise 19.4
Meaningful Activity 19.4
Sleep 7.7
Nutrition 22.9
Community 16.2
Stress Management 23.9
Run Code Online (Sandbox Code Playgroud)
到目前为止我的代码是
df_plot.plot(x ='Pillar', y='%', kind = 'bar')
plt.show()
Run Code Online (Sandbox Code Playgroud) 我正在尝试从包含解析树的文件中学习 PCFG,例如:
(S (DECL_MD (NP_PPSS (PRON_PPSS (ii))) (VERB_MD (pt_verb_md need)) (NP_NN (ADJ_AT (aa)) (NOUN_NN (flight flight)) (PREP_IN (pt_prep_in from))) (AVPNP_NP (NOUN_NP (charlotte charlotte) ))
这是我的相关代码:
def loadData(path):
with open(path ,'r') as f:
data = f.read().split('\n')
return data
def getTreeData(data):
return map(lambda s: tree.Tree.fromstring(s), data)
# Main script
print("loading data..")
data = loadData('C:\\Users\\Rayyan\\Desktop\\MSc Data\\NLP\\parseTrees.txt')
print("generating trees..")
treeData = getTreeData(data)
print("done!")
print("done!")
Run Code Online (Sandbox Code Playgroud)
现在之后我在互联网上尝试了很多东西,例如:
grammar = induce_pcfg(S, productions)
Run Code Online (Sandbox Code Playgroud)
但这里的产品总是内置的功能,例如:
productions = []
for item in treebank.items[:2]:
for tree in treebank.parsed_sents(item):
productions += tree.productions() …Run Code Online (Sandbox Code Playgroud)