小编dar*_*ake的帖子

Tensorflow 高误报率和非最大抑制问题

我正在使用fast_rcnn_inception_v2_coco作为预训练模型在 Windows 10 上训练Tensorflow 对象检测。我在 Windows 10 上,在 NVIDIA GeForce GTX 1080、CUDA 9.0 和 CUDNN 7.0 上使用 tensorflow-gpu 1.6。

我的数据集只包含一个对象“手枪”和 3000 张图像(2700 个训练集,300 个测试集)。图像的大小从 ~100x200 到 ~800x600。

我对该模型进行了 55k 次迭代训练,其中mAP约为 0.8,而TotalLoss似乎收敛到 0.001。但是,但是,看到评估,在同一个检测到的对象(例如thisthis)上有很多多个边界框,并且有很多误报(房子被检测为手枪)。例如,在我拍摄的这张照片中(后来应用了模糊滤镜),模型将人和汽车检测为手枪,以及正确检测。

数据集与 tfrecords 和标签图一起上传到这里。我使用了这个配置文件,其中我唯一更改的内容是:num_classes为 1、fine_tune_checkpoint、train 和 eval 的input_pathlabel_map_path以及num_examples。 由于我认为多个框是非最大抑制问题,因此我将score_threshold(第 73 行)从 0 更改为 0.01,将iou_threshold(第 74 行)从 …

object-detection false-positive non-maximum-suppression tensorflow object-detection-api

6
推荐指数
1
解决办法
2239
查看次数