我的目标是在谷歌云ml引擎上做出预测.
我按照谷歌的指示在linux ubuntu 16.04LT上安装了gcloud sdk .我已经有一台机器学习训练模型.我使用python版本anaconda python 3.5.
我跑:
gcloud ml-engine local predict --model-dir={MY_MODEL_DIR} --json-instances={MY_INPUT_JSON_INSTANCE}
Run Code Online (Sandbox Code Playgroud)
我收到了消息:错误:
(gcloud.ml-engine.local.predict)RuntimeError:.pyc文件中的错误幻数
下面是所有堆栈跟踪:
DEBUG: (gcloud.ml-engine.local.predict) RuntimeError: Bad magic number in .pyc file
Traceback (most recent call last):
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/calliope/cli.py", line 797, in Execute
resources = calliope_command.Run(cli=self, args=args)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/calliope/backend.py", line 757, in Run
resources = command_instance.Run(args)
File "/usr/lib/google-cloud-sdk/lib/surface/ml_engine/local/predict.py", line 65, in Run
args.text_instances)
File "/usr/lib/google-cloud-sdk/lib/googlecloudsdk/command_lib/ml_engine/local_utils.py", line 89, in RunPredict
raise LocalPredictRuntimeError(err)
LocalPredictRuntimeError: RuntimeError: Bad magic number in .pyc file
ERROR: (gcloud.ml-engine.local.predict) RuntimeError: Bad …Run Code Online (Sandbox Code Playgroud) python google-cloud-platform gcloud tensorflow google-cloud-ml
我正在使用 google api python 客户端和在 google cloud 为我托管的模型在 google cloud machine learning API 上运行在线预测。当我预测发送一张图像时,服务器(包括所有流量)大约需要 40 秒。当我发送两个图像时,一段时间后,我收到消息:
timeout: The read operation timed out
Run Code Online (Sandbox Code Playgroud)
我想将超时设置为其他值,但我没有找到方法。
这是我的代码:
import base64
import io
import time
from PIL import Image
from oauth2client.service_account import ServiceAccountCredentials
from googleapiclient import discovery
SCOPES = ['https://www.googleapis.com/auth/cloud-platform']
SERVICE_ACCOUNT_FILE = 'mycredentialsfile.json'
credentials = ServiceAccountCredentials.from_json_keyfile_name(
SERVICE_ACCOUNT_FILE, scopes=SCOPES)
ml = discovery.build('ml', 'v1', credentials=credentials)
projectID = 'projects/{}'.format('projectID') + '/models/{}'.format('modelID')
width = 640
height = 480
instances = []
for image in ["image5.jpg", "image6.jpg"]:
img = Image.open(image) …Run Code Online (Sandbox Code Playgroud)