小编Min*_*lek的帖子

从 Keras model.evaluate 和 model.predict 得到不同的结果

我已经训练了模型中使用word2vec和使用keras的LSTM模型来预测主题类别,并有大约训练期间98%的准确率,我保存的模型,然后装到另一个文件试图在测试集,我用model.evaluatemodel.predict,结果非常不一样。

我使用 keras 和 tensorflow 作为后端,模型摘要是:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_1 (LSTM)                (None, 22)                19624     
_________________________________________________________________
dropout_1 (Dropout)          (None, 22)                0         
_________________________________________________________________
dense_1 (Dense)              (None, 40)                920       
_________________________________________________________________
activation_1 (Activation)    (None, 40)                0         
=================================================================
Total params: 20,544
Trainable params: 20,544
Non-trainable params: 0
_________________________________________________________________
None
Run Code Online (Sandbox Code Playgroud)

编码:

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.load_weights(os.path.join('model', 'lstm_model_weights.hdf5'))
score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)

print()
print('Score: %1.4f' % score)
print('Evaluation Accuracy: %1.2f%%' % (acc*100))

predicted = model.predict(x_test, batch_size=batch_size)
acc2 …
Run Code Online (Sandbox Code Playgroud)

python machine-learning predict deep-learning keras

8
推荐指数
1
解决办法
2452
查看次数

标签 统计

deep-learning ×1

keras ×1

machine-learning ×1

predict ×1

python ×1