在创建模型时,没有更多具有扩展完成的模型
.syn1neg.npy
syn0.npy
我的代码如下:
corpus= x+y
tok_corp= [nltk.word_tokenize(sent.decode('utf-8')) for sent in corpus]
model = gensim.models.Word2Vec(tok_corp, min_count=1, size = 32)
model.save('/home/Desktop/test_model')
model = gensim.models.Word2Vec.load('/home/kafein/Desktop/chatbot/test_model')
Run Code Online (Sandbox Code Playgroud)
只有一个模型文件
test_model
Run Code Online (Sandbox Code Playgroud)
哪一部分我错了?
我是 keras 和深度学习的新手。当我创建一个示例基本模型时,我适合它并且我的模型的对数损失始终相同。
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same', init='he_normal',
input_shape=(color_type, img_rows, img_cols)))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th"))
model.add(Dropout(0.5))
model.add(Convolution2D(64, 3, 3, border_mode='same', init='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th")) #this part is wrong
model.add(Dropout(0.5))
model.add(Convolution2D(128, 3, 3, border_mode='same', init='he_normal'))
model.add(MaxPooling2D(pool_size=(2, 2), dim_ordering="th"))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(Adam(lr=1e-3), loss='categorical_crossentropy')
model.fit(x_train, y_train, batch_size=64, nb_epoch=200,
verbose=1, validation_data=(x_valid,y_valid))
Run Code Online (Sandbox Code Playgroud)
训练 17939 个样本,验证 4485 个样本
纪元 1/200 17939/17939 [==============================] - 8s - 损失:99.8137 - acc:0.3096 - val_loss: 99.9626 - val_acc: 0.0000e+00
纪元 2/200 17939/17939 [==============================] - 8s - 损失:99.8135 …