使用非常有用的mlr3 书中的示例,我尝试简单地返回堆叠模型输出的平均分数。有人可以解释一下如何使用 mlr3 执行此操作吗?我尝试过使用LearnerClassifAvg$new( id = "classif.avg")和po("classifavg"),但不确定我是否正确应用了这些,谢谢
例子:
library("magrittr")
library("mlr3learners") # for classif.glmnet
task = mlr_tasks$get("iris")
train.idx = sample(seq_len(task$nrow), 120)
test.idx = setdiff(seq_len(task$nrow), train.idx)
rprt = lrn("classif.rpart", predict_type = "prob")
glmn = lrn("classif.glmnet", predict_type = "prob")
# Create Learner CV Operators
lrn_0 = PipeOpLearnerCV$new(rprt, id = "rpart_cv_1")
lrn_0$param_set$values$maxdepth = 5L
lrn_1 = PipeOpPCA$new(id = "pca1") %>>% PipeOpLearnerCV$new(rprt, id = "rpart_cv_2")
lrn_1$param_set$values$rpart_cv_2.maxdepth = 1L
lrn_2 = PipeOpPCA$new(id = "pca2") %>>% PipeOpLearnerCV$new(glmn)
# Union them with a …Run Code Online (Sandbox Code Playgroud)