我正在尝试开始使用 Tensorflow 2.0 Object Detection API。我按照官方教程完成了安装,并通过了所有测试。但是,当我尝试运行主模块时,我不断收到我不明白的错误消息。这是我运行它的方式:
python model_main_tf2.py --model_dir=ssd_resnet50_v1_fpn_640x640_coco17_tpu-8 --pipeline_config_path=ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/pipeline.config
Run Code Online (Sandbox Code Playgroud)
这是错误消息的开头:
Traceback (most recent call last):
File "model_main_tf2.py", line 113, in <module>
tf.compat.v1.app.run()
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/tensorflow/python/platform/app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/absl/app.py", line 299, in run
_run_main(main, args)
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/absl/app.py", line 250, in _run_main
sys.exit(main(argv))
File "model_main_tf2.py", line 110, in main
record_summaries=FLAGS.record_summaries)
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/object_detection/model_lib_v2.py", line 569, in train_loop
unpad_groundtruth_tensors)
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/object_detection/model_lib_v2.py", line 383, in load_fine_tune_checkpoint
ckpt.restore(checkpoint_path).assert_existing_objects_matched()
File "/home/hd/hd_hd/hd_rs239/.conda/envs/jan_tf2/lib/python3.7/site-packages/tensorflow/python/training/tracking/util.py", line 791, in assert_existing_objects_matched
(list(unused_python_objects),)) …
Run Code Online (Sandbox Code Playgroud) python deep-learning tensorflow object-detection-api tensorflow2.0
我想在SQLAlchemy中执行“如果不存在则创建模式”查询。有没有比这更好的方法:
engine = sqlalchemy.create_engine(connstr)
schema_name = config.get_config_value('db', 'schema_name')
#Create schema; if it already exists, skip this
try:
engine.execute(CreateSchema(schema_name))
except sqlalchemy.exc.ProgrammingError:
pass
Run Code Online (Sandbox Code Playgroud)
我正在使用Python 3.5。
我最近开始在一家使用Elasticsearch的公司工作.虽然它的大部分概念与关系数据库有些相似,而且我能够理解它们,但我仍然不太了解别名的概念.
我在这里没有找到任何这样的问题,Elasticsearch网站上提供的信息也没有多大帮助.
有人可以解释别名是什么,理想情况下包括需要它们的情况的例子吗?
我是 PyTorch 的新手,所以请原谅我的愚蠢问题。
我在 Encoder 对象的 init 中定义了一个 nn.Sequential,如下所示:
self.list_of_blocks = [EncoderBlock(n_features, n_heads, n_hidden, dropout) for _ in range(n_blocks)]
self.blocks = nn.Sequential(*self.list_of_blocks)
Run Code Online (Sandbox Code Playgroud)
EncoderBlock 的前向看起来像这样
def forward(self, x, mask):
Run Code Online (Sandbox Code Playgroud)
在我的编码器的forward()中,我尝试执行以下操作:
z0 = self.blocks(z0, mask)
Run Code Online (Sandbox Code Playgroud)
我希望 nn.Sequential 将这两个参数传递给各个块。
但是,我得到
TypeError: forward() takes 2 positional arguments but 3 were given
Run Code Online (Sandbox Code Playgroud)
当我尝试时:
z0 = self.blocks(z0)
Run Code Online (Sandbox Code Playgroud)
我得到(可以理解):
TypeError: forward() takes 2 positional arguments but only 1 was given
Run Code Online (Sandbox Code Playgroud)
当我不使用 nn.Sequential 并仅执行一个又一个 EncoderBlock 时,它会起作用:
for i in range(self.n_blocks):
z0 = self.list_of_blocks[i](z0, mask)
Run Code Online (Sandbox Code Playgroud)
问题:我做错了什么以及在这种情况下如何正确使用 nn.Sequential?
neural-network sequential deep-learning attention-model pytorch
python ×2
database ×1
python-3.x ×1
pytorch ×1
sequential ×1
sql ×1
sqlalchemy ×1
tensorflow ×1