我正在尝试制作一个一类分类卷积神经网络。一类是指我有一个图像数据集,其中包含大约 200 张 Nicolas Cage 的图像。通过一类分类,我的意思是查看图像并预测 1 如果此图像中包含 Nicolas Cage 并预测 0 Nicolas Cage 不包含在图像中。
我绝对是一个机器学习/深度学习初学者,所以我希望有更多知识和经验的人可以帮助指导我朝着正确的方向前进。这是我现在的问题和问题。我的网络表现非常糟糕。我试过用 Nicolas Cage 的图像进行一些预测,每次都预测为 0。
这是我使用名为 google-images-download 的包收集的数据集外观的屏幕截图。它包含大约 200 张尼古拉斯凯奇的图像。我做了两次搜索以下载 500 张图片。手动清理图像后,我只剩下 200 张 Nic Cage 质量的图片。 数据集
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.layers import …Run Code Online (Sandbox Code Playgroud) python classification deep-learning conv-neural-network keras