def fatorial(n):
if n <= 1:
return 1
else:
return n*fatorial(n - 1)
import pytest
@pytest.mark.parametrize("entrada","esperado",[
(0,1),
(1,1),
(2,2),
(3,6),
(4,24),
(5,120)
])
def testa_fatorial(entrada,esperado):
assert fatorial(entrada) == esperado
Run Code Online (Sandbox Code Playgroud)
错误:
ERROR collecting Fatorial_pytest.py ____________________________________________________________________
In testa_fatorial: indirect fixture '(0, 1)' doesn't exist
Run Code Online (Sandbox Code Playgroud)
我不知道为什么我得到了“间接夹具”。知道吗?我使用的是 python 3.7 和 windows 10 64 位。
香农熵是:
\r\n\r\n is the end of a HTPP header:
Run Code Online (Sandbox Code Playgroud)
不完整的HTTP标头:
我有一个PCAP格式的网络转储(dump.pcap),我试图 使用Python 计算HTTP协议中包含\r\n\r\n
和不包含数据包的数量的熵\r\n\r\n
并比较它们.我用以下方法读取数据包:
import pyshark
pkts = pyshark.FileCapture('dump.pcap')
Run Code Online (Sandbox Code Playgroud)
我认为Ti
在shannon公式中是我的转储文件的数据.
dump.pcap:https://uploadfiles.io/y5c7k
我已经计算了IP号的熵:
import numpy as np
import collections
sample_ips = [
"131.084.001.031",
"131.084.001.031",
"131.284.001.031",
"131.284.001.031",
"131.284.001.000",
]
C = collections.Counter(sample_ips)
counts = np.array(list(C.values()),dtype=float)
#counts = np.array(C.values(),dtype=float)
prob = counts/counts.sum()
shannon_entropy = (-prob*np.log2(prob)).sum()
print (shannon_entropy)
Run Code Online (Sandbox Code Playgroud)
任何的想法?是否有可能计算与HTTP协议的分组的数目的熵\r\n\r\n
和没有\r\n\r\n
在头或它是一个无义想法?
转储的几行:
30 2017/246 11:20:00.304515 192.168.1.18 192.168.1.216 HTTP 339 GET / HTTP/1.1
GET / HTTP/1.1 …
Run Code Online (Sandbox Code Playgroud) 我正在尝试使用keras来拟合我的模型(神经网络),但我得到了ValueError错误.
进口keras
from keras.models import Sequential
from keras.layers import Dense
classificador_rede_neural = Sequential()
# # Camadas Ocultas e de Saída
# camadas ocultas = (entradas + saídas)/2 #estimando o numero de neurônios em camada oculta
#
# temos:len(train.columns) - 1 atributos previsores
#
# 1 classe
#len(train.columns)
camadas_ocultas = round(len(train.columns)/2)
print(camadas_ocultas)
classificador_rede_neural.add(Dense(units=camadas_ocultas, activation='relu',input_dim =len(train.columns) ))#primeira camada
classificador_rede_neural.add(Dense(units=camadas_ocultas, activation='relu' ))#segunda camada
classificador_rede_neural.add(Dense(units=1, activation='sigmoid' ))#camada de saída. a saída é binária, logo units=1
Run Code Online (Sandbox Code Playgroud)
classificador_rede_neural.compile(优化= '亚当',损耗= 'binary_crossentropy',度量= [ '准确性'])
classificador_rede_neural.fit(X_train2,y_train2,batch_size=10,epochs =100)
Run Code Online (Sandbox Code Playgroud)
我收到错误:
ValueError: …
Run Code Online (Sandbox Code Playgroud) 是两个类Point()
并Circle()
定义如下:
class Point:
def __init__(self, x, y):
self._x = x
self._y = y
@property
def x(self):
return self._x
@x.setter
def x(self, x):
self._x = x
@property
def y(self):
return self._y
@y.setter
def y(self, y):
self._y = y
def __repr__(self):
return f"{self._x}, {self._y}"
def move(self, x, y):
self._x = x
self._y = y
return self._x, self._y
class Circle:
def __init__(self, radius, x, y):
self._radius = radius
self.x = x
self.y = y
def move(self, x, y):
Point.move(self, …
Run Code Online (Sandbox Code Playgroud) 我试图使我的算法在LaTeX中更具可读性:
\documentclass{IEEEtran}
\usepackage{algpseudocode}
\usepackage{algorithm}
\begin{document}
\begin{algorithm}[H]
\caption{Detecta \textit{Slowloris}}
\begin{algorithmic}[1]
\Function{Divide\_slices\_1min }{Arquivo PCAP}
\State \Return \textit{sliceAtual}
\EndFunction
\Function{Separa\_IP\_Origem\_Destino}{sliceAtual}
\State \Return $ArquivoIPs$
\EndFunction
\Function{Calcula\_entropia\_IP\_Origem\_Destino}{ArquivoIP}
\State \Return $EntroSliceAtualIP$
\EndFunction
\Function{PVS}{sliceAtual}
\State \Return $PVS_SliceAtual$
\EndFunction
\Function{FCS}{sliceAtual}
\State \Return $FCS_SliceAtual$
\EndFunction
\If {$entropiaSliceAtual$ > $entropiaSemAtaq$ + 0,10*$entropiaSemAtaq$}
\If {$PVS_SliceAtual$ > $PVS_SemAtaq$ + 0.60*$PVS_SemAtaq$}
\If {$FCS_SliceAtual$ > $FCS_SemAtaq$ - 0.40*$FCS_SemAtaq$}
\State \Return $Ataque$
\Else
\State \Return $SemAtaques$
\EndIf
\EndIf
\EndIf
\end{algorithmic}
\end{algorithm}
\end{document}
Run Code Online (Sandbox Code Playgroud)
结果不是很好:
我希望它只显示对函数的调用而没有太多的结尾。
我想要这样的东西:
有什么建议吗?我正在努力!IEEEtran类为:https ://ctan.org/pkg/ieeetran ? lang = en
我正在使用 sklearn 的内置数据集 iris 进行聚类。在 KMeans 中,我预先设置了簇的数量,但对于 DBSCAN 来说并非如此。如果不提前设置簇数,如何训练模型?
我试过:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#%matplotib inline
from sklearn.cluster import DBSCAN,MeanShift
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split,KFold,cross_val_score
from sklearn.metrics import accuracy_score,confusion_matrix
iris = load_iris()
X = iris.data
y = iris.target
dbscan = DBSCAN(eps=0.3,min_samples=10)
dbscan.fit(X,y)
Run Code Online (Sandbox Code Playgroud)
我已经被困住了!
python cluster-analysis machine-learning dbscan scikit-learn
python ×4
python-3.x ×4
dbscan ×1
entropy ×1
keras ×1
latex ×1
oop ×1
pytest ×1
python-2.7 ×1
python-3.7 ×1
scikit-learn ×1