我正在尝试安装platformio-ide-terminal到 Atom 1.63.1 中。我得到了错误certificate has expired。我尝试了替代 Terminus 并得到了同样的错误。任何软件包安装尝试都会以相同的错误结束。请帮忙。
我正在尝试按值对数据框进行排序。收到 AttributeError:“Series”对象没有属性“to_numeric”。版本“0.20.3”,因此数字应该可以工作,但不行。请帮忙。
import pandas as pd
tables = pd.read_html("https://www.sec.gov/Archives/edgar/data/949012/000156761919015285/xslForm13F_X01/form13fInfoTable.xml")
len(tables)
ren=tables[3]
ren.drop(ren.index[[0,1,2]], inplace=True)
ren.to_numeric(ren[3], errors='coerce')
#ren[3].convert_objects(convert_numeric=True)
ren.sort_values(by=[3],ascending=False)
Run Code Online (Sandbox Code Playgroud) 我有一个在 MNIST 上训练的模型,但是当我放入一个手工制作的图像样本时,它会引发 ValueError: Input 0 of layer序列与该层不兼容:输入形状的预期轴 -1 具有值 784 但收到输入带形状(无,1)
我已经检查了模型的输入,它与 MNIST 的形状相同。x_train[0].shape (784,) 和我的图片 arr.shape (784,) 请帮忙!
...
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras import utils
from tensorflow.keras.preprocessing import image
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
print(x_train[3].shape)
x_train = x_train.reshape(60000, 784)
x_train = x_train / 255
model = Sequential()
model.add(Dense(800, input_dim=784, activation="relu"))
model.add(Dense(10, activation="softmax"))
model.compile(loss="categorical_crossentropy", optimizer="SGD", metrics=["accuracy"])
history = model.fit(x_train, …Run Code Online (Sandbox Code Playgroud) 请帮忙,SEC EDGAR 以前一直工作得很好,直到现在。它给出 HTTPError: HTTP Error 403: Forbidden
import pandas as pd
tables = pd.read_html("https://www.sec.gov/Archives/edgar/data/1541617/000110465920125814/xslForm13F_X01/infotable.xml")
df=tables[3]
df
Run Code Online (Sandbox Code Playgroud) dataframe ×2
pandas ×2
atom-editor ×1
certificate ×1
console ×1
keras ×1
parsing ×1
python ×1
tensorflow ×1
terminal ×1