我正在尝试使用以下代码从Google加载预训练的单词向量:
from gensim import models
w = models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True)
Run Code Online (Sandbox Code Playgroud)
但是我收到的错误告诉了我
文件"C:\ ProgramData\Anaconda3\lib\site-packages\gensim\models\keyedvectors.py",第197行,in load_word2vec_format result.syn0 = zeros((vocab_size,vector_size),dtype = datatype)
ValueError:数组太大;
arr.size * arr.dtype.itemsize大于最大可能的大小.
有谁能建议一个可能的解决方案 提前致谢.
我有一个很大的 csv 文件,假设它看起来像这样
ID,PostCode,Value
H1A0A1-00,H1A0A1,0
H1A0A1-01,H1A0A1,0
H1A0A1-02,H1A0A1,0
H1A0A1-03,H1A0A1,0
H1A0A1-04,H1A0A1,1
H1A0A1-05,H1A0A1,0
H1A1G7-0,H1A1G7,0
H1A1G7-1,H1A1G7,0
H1A1G7-2,H1A1G7,0
H1A1N6-00,H1A1N6,0
H1A1N6-01,H1A1N6,0
H1A1N6-02,H1A1N6,0
H1A1N6-03,H1A1N6,0
H1A1N6-04,H1A1N6,0
H1A1N6-05,H1A1N6,0
...
Run Code Online (Sandbox Code Playgroud)
我想按邮政编码值将其拆分,并将具有相同邮政编码的所有行保存为 CSV。我努力了
postals = data['PostCode'].unique()
for p in postals:
df = data[data['PostCode'] == p]
df.to_csv(directory + '/output/demographics/' + p + '.csv', header=False, index=False)
Run Code Online (Sandbox Code Playgroud)
有没有办法使用 Dask 来利用多处理来做到这一点?谢谢
我有一个包含两列的数据框。一个是数字的,另一个是分类的。例如,
c1 c2
0 15 A
1 11 A
2 12 B
3 40 C
Run Code Online (Sandbox Code Playgroud)
我想按 c1 排序,但将具有相同 c2 值的行保留在一起(因此所有 A 都保留在一起)。在有多个条目的类别中,我们按该类别中的最大值进行排序。
所以最终结果是
c1 c2
0 40 C
1 15 A
2 11 A
3 12 B
Run Code Online (Sandbox Code Playgroud)
我该怎么做?谢谢