我正在使用keras应用程序通过resnet 50和Inception v3进行迁移学习,但是在预测时总是得到 [[ 0.]]
以下代码用于二进制分类问题。我也尝试过vgg19和vgg16,但是它们可以正常工作,只是resnet和inception。数据集是50/50分割。而且我只更改model = applications.resnet50.ResNet50每种模型的代码行。
下面是代码:
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, 256
train_data_dir = xxx
validation_data_dir = xxx
nb_train_samples = 14000
nb_validation_samples = 6000
batch_size = 16
epochs = 50
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = applications.resnet50.ResNet50(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
from keras.callbacks import EarlyStopping
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
img_width, img_height = 256, …Run Code Online (Sandbox Code Playgroud) 我有一个 Pandas 数据框,它有两种不同格式的日期时间,例如:
3/14/2019 5:15:32 AM
2019-08-03 05:15:35
2019-01-03 05:15:33
2019-01-03 05:15:33
2/28/2019 5:15:31 AM
2/27/2019 11:18:39 AM
Run Code Online (Sandbox Code Playgroud)
...
我尝试了各种格式但出现错误 like ValueError: unconverted data remains: AM
我想将格式设为 2019-02-28 并删除时间