我正在尝试训练 GAN 以了解事件中多个特征的分布。训练的鉴别器和生成器的损失较低,但生成的事件具有不同形状的分布,但我不确定为什么。
我将 GAN 定义如下:
def create_generator():
generator = Sequential()
generator.add(Dense(50,input_dim=noise_dim))
generator.add(LeakyReLU(0.2))
generator.add(Dense(25))
generator.add(LeakyReLU(0.2))
generator.add(Dense(5))
generator.add(LeakyReLU(0.2))
generator.add(Dense(len(variables), activation='tanh'))
return generator
def create_descriminator():
discriminator = Sequential()
discriminator.add(Dense(4, input_dim=len(variables)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dense(4))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dense(4))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer)
return discriminator
discriminator = create_descriminator()
generator = create_generator()
def define_gan(generator, discriminator):
# make weights in the discriminator not trainable
discriminator.trainable = False
model = Sequential()
model.add(generator)
model.add(discriminator)
model.compile(loss = 'binary_crossentropy', optimizer=optimizer)
return model
gan = define_gan(generator, discriminator)
Run Code Online (Sandbox Code Playgroud)
我使用这个循环训练 GAN:
for epoch in range(epochs): …Run Code Online (Sandbox Code Playgroud)