我有一个很大的输入特征作为大小500x500x500和10000此类样本的3D 数组。和尺寸标签500x500x500x500。我创建了一个输入形状的模型,在输入处500x500x500仅使用Conv3D一层,Dense在输出处仅使用一层(我有自己的理由在输出处使用密集层),网络的输出形状为500x500x500x500.
以下是我使用的最低限度模型:
ip = Input(shape=(500,500,500,1))
x = Conv3D(100,3,activation="relu",padding='same')(ip)
x = Dense(500,activation="softmax")(x)
nn = Model(inputs=ip, outputs=x)
Run Code Online (Sandbox Code Playgroud)
以下是摘要:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_5 (InputLayer) (None, 500, 500, 500, 1) 0
_________________________________________________________________
conv3d_4 (Conv3D) (None, 500, 500, 500, 100 2800
_________________________________________________________________
dense_4 (Dense) (None, 500, 500, 500, 500 50500
=================================================================
Total params: 53,300
Trainable params: 53,300
Non-trainable params: 0
_________________________________________________________________
Run Code Online (Sandbox Code Playgroud)
当我运行模型时出现内存错误,因为我有 64 GB RAM …
artificial-intelligence machine-learning deep-learning keras data-science