我正在使用Keras构建一个多类(3个类)图像分类器。我用大约2000张图像的数据集训练了以下模型(1500次训练/ 500次验证)。
batch_size = 128
nb_classes = 3
nb_epoch = 25
img_rows, img_cols = 128, 128
input_shape = (1, img_rows, img_cols)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Convolution2D(32, 5, 5, border_mode='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Dense(nb_classes, activation='softmax'))
lrate = 0.001
decay = lrate/nb_epoch
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
history …Run Code Online (Sandbox Code Playgroud)