有没有办法通过循环读取多个csv文件到Pandas并定义它们?
for i in ['a', 'b', 'c', 'd']:
csv_(i) = pd.read_csv('C:/test_{}.csv'.format(i))
Run Code Online (Sandbox Code Playgroud)
我看到有关读取和将多个csv附加到单个数据帧中的多个问题.不是相反.
在我的工作流程中,有多个带有四列的 CSV OID, value, count, unique_id。我想弄清楚如何在unique_id列下生成增量值。使用apply(),我可以做一些类似的事情df.apply(lambda x : x + 1) #where x = 0,它会导致所有的值都unique_id为 1。但是,我对如何使用apply()在特定列的每一行中生成增量值感到困惑。
# Current Dataframe
OID Value Count unique_id
0 -1 1 5 0
1 -1 2 46 0
2 -1 3 32 0
3 -1 4 3 0
4 -1 5 17 0
# Trying to accomplish
OID Value Count unique_id
0 -1 1 5 0
1 -1 2 46 1
2 -1 3 …Run Code Online (Sandbox Code Playgroud) 我有一个调用多个 R 脚本的 python 脚本,到目前为止我可以成功传递单个和多个变量,要求 R 读取并执行它。我当前的方法非常粗糙,仅在传递字符串时有效,而在传递数字时失败。有没有一种有效的方法来完成这项任务?
#### Python Code
import subprocess
def rscript():
r_path = "C:/.../R/R-3.3.2/bin/x64/Rscript"
script = "C:/.../test.R"
#The separators are not recognized in R script so commas are added for splitting text
a_list = ["C:/SomeFolder,", "abc,", "25"]
subprocess.call ([r_path, script, a_list], shell = True)
print 'Script Complete'
#Execute R Function
rscript()
#### R Code
options(echo=TRUE)
args <- commandArgs(trailingOnly = TRUE)
print(args)
args1 <- strsplit(args,",") #split the string argument with ','
args1 <- as.data.frame(args1)
print(args1)
path <- as.character(args1[1,]) …Run Code Online (Sandbox Code Playgroud) 我的样本df有四个带有NaN值的列。目标是连接所有行,同时排除NaN值。
import pandas as pd
import numpy as np
df = pd.DataFrame({'keywords_0':["a", np.nan, "c"],
'keywords_1':["d", "e", np.nan],
'keywords_2':[np.nan, np.nan, "b"],
'keywords_3':["f", np.nan, "g"]})
keywords_0 keywords_1 keywords_2 keywords_3
0 a d NaN f
1 NaN e NaN NaN
2 c NaN b g
Run Code Online (Sandbox Code Playgroud)
想要完成以下任务:
keywords_0 keywords_1 keywords_2 keywords_3 keywords_all
0 a d NaN f a,d,f
1 NaN e NaN NaN e
2 c NaN b g c,b,g
Run Code Online (Sandbox Code Playgroud)
伪代码:
cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]
df["keywords_all"] = df["keywords_all"].apply(lambda …Run Code Online (Sandbox Code Playgroud)