我正在为 CPUE 数据运行零膨胀模型。该数据有零通货膨胀的证据,我已通过 Vuong 测试(在下面的代码中)确认了这一点。根据 AIC 的说法,完整模型 (zint) 优于零模型。我现在想要:
我向该部门的几位统计学家寻求帮助(他们以前从未这样做过,并将我发送到相同的谷歌搜索网站),向统计部门本身(每个人都太忙)以及 stackoverflow feed 寻求帮助。
我很欣赏书籍的代码或指南(在线免费提供),其中包含使用偏移变量时处理可视化 ZIP 和模型拟合的代码。
yc=read.csv("CPUE_ycs_trawl_withcobb_BLS.csv",header=TRUE)
yc=yc[which(yc$countinyear<150),]
yc$fyear=as.factor(yc$year_cap)
yc$flocation=as.factor(yc$location)
hist(yc$countinyear,20)
yc$logoffset=log(yc$numtrawlyr)
###Run Zero-inflated poisson with offset for CPUE####
null <- formula(yc$countinyear ~ 1| 1)
znull <- zeroinfl(null, offset=logoffset,dist = "poisson",link = "logit",
data = yc)
int <- formula(yc$countinyear ~ assnage * spawncob| assnage * spawncob)
zint <- zeroinfl(int, offset=logoffset,dist = "poisson",link = "logit", data
= yc)
AIC(znull,zint)
g1=glm(countinyear ~ assnage * spawncob,
offset=logoffset,data=yc,family=poisson)
summary(g1)
####Vuong …
Run Code Online (Sandbox Code Playgroud) lme4
我正在R 中使用混合模型:
full_mod3=lmer(logcptplus1 ~ logdepth*logcobb + (1|fyear) + (1 |flocation),
data=cpt, REML=TRUE)
Run Code Online (Sandbox Code Playgroud)
概括:
Formula: logcptplus1 ~ logdepth * logcobb + (1 | fyear) + (1 | flocation)
Data: cpt
REML criterion at convergence: 577.5
Scaled residuals:
Min 1Q Median 3Q Max
-2.7797 -0.5431 0.0248 0.6562 2.1733
Random effects:
Groups Name Variance Std.Dev.
fyear (Intercept) 0.2254 0.4748
flocation (Intercept) 0.1557 0.3946
Residual 0.9663 0.9830
Number of obs: 193, groups: fyear, 16; flocation, 16
Fixed effects:
Estimate Std. Error t value …
Run Code Online (Sandbox Code Playgroud)