小编Xco*_*rpX的帖子

具有Tensorflow后端的Keras的K.function方法是否适用于网络层?

我最近开始使用Keras构建神经网络.我构建了一个简单的CNN来对MNIST数据集进行分类.在学习我用于K.set_image_dim_ordering('th')绘制卷积层权重的模型之前.现在我试图用K.function方法可视化卷积层输出,但我不断收到错误.

这是我现在想做的事情:

input_image = X_train[2:3,:,:,:]

output_layer = model.layers[1].output
input_layer = model.layers[0].input

output_fn = K.function(input_layer, output_layer)

output_image = output_fn.predict(input_image)
print(output_image.shape)

output_image = np.rollaxis(np.rollaxis(output_image, 3, 1), 3, 1)
print(output_image.shape)

fig = plt.figure()
for i in range(32):
    ax = fig.add_subplot(4,8,i+1)
    im = ax.imshow(output_image[0,:,:,i], cmap="Greys")
    plt.xticks(np.array([]))
    plt.yticks(np.array([]))
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([1, 0.1, 0.05 ,0.8])
fig.colorbar(im, cax = cbar_ax)
plt.tight_layout()

plt.show()
Run Code Online (Sandbox Code Playgroud)

这就是我得到的:

  File "/home/kinshiryuu/anaconda3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 1621, in function
return Function(inputs, outputs, updates=updates)

  File "/home/kinshiryuu/anaconda3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 1569, in __init__
raise TypeError('`inputs` to …
Run Code Online (Sandbox Code Playgroud)

deep-learning keras tensorflow

3
推荐指数
1
解决办法
1万
查看次数

标签 统计

deep-learning ×1

keras ×1

tensorflow ×1