即使处理缺失值,我也面临多个变量的错误.例如:
le = preprocessing.LabelEncoder()
categorical = list(df.select_dtypes(include=['object']).columns.values)
for cat in categorical:
print(cat)
df[cat].fillna('UNK', inplace=True)
df[cat] = le.fit_transform(df[cat])
# print(le.classes_)
# print(le.transform(le.classes_))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-424a0952f9d0> in <module>()
4 print(cat)
5 df[cat].fillna('UNK', inplace=True)
----> 6 df[cat] = le.fit_transform(df[cat].fillna('UNK'))
7 # print(le.classes_)
8 # print(le.transform(le.classes_))
C:\Users\paula.ceccon.ribeiro\AppData\Local\Continuum\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in fit_transform(self, y)
129 y = column_or_1d(y, warn=True)
130 _check_numpy_unicode_bug(y)
--> 131 self.classes_, y = np.unique(y, return_inverse=True)
132 return y
133
C:\Users\paula.ceccon.ribeiro\AppData\Local\Continuum\Anaconda3\lib\site-packages\numpy\lib\arraysetops.py in unique(ar, return_index, return_inverse, return_counts)
209
210 if optional_indices:
--> …
Run Code Online (Sandbox Code Playgroud) 使用来自Zillow研究数据站点的数据主要是城市级别.数据结构是6列包含城市相关信息,其余245列包含月销售价格.我使用下面的代码显示数据样本
import pandas as pd
from tabulate import tabulate
df = pd.read_csv("City_Zhvi_AllHomes.csv")
c = df.columns.tolist()
cols = c[:7]
cols.append(c[-1])
print (tabulate(df[cols].iloc[23:29], headers = 'keys', tablefmt = 'orgtbl'))
Run Code Online (Sandbox Code Playgroud)
上面的代码将打印一个样本,如下所示:
| | RegionID | RegionName | State | Metro | CountyName | SizeRank | 1996-04 | 2016-08 |
|----+------------+---------------+---------+---------------+--------------+------------+-----------+-----------|
| 23 | 5976 | Milwaukee | WI | Milwaukee | Milwaukee | 24 | 68100 | 99500 |
| 24 | 7481 | Tucson | AZ | Tucson | Pima …
Run Code Online (Sandbox Code Playgroud)