小编Mic*_* S.的帖子

迁移学习准确性差

我的任务是根据缺陷对种子进行分类。我有 7 个类的大约 14k 图像(它们的大小不相等,有些类有更多照片,有些类有更少)。我尝试从头开始训练 Inception V3,准确率约为 90%。然后我尝试使用带有 ImageNet 权重的预训练模型进行迁移学习。我inception_v3applications没有顶级 fc 层的情况下导入,然后在文档中添加了我自己的层。我以以下代码结束:

# Setting dimensions
img_width = 454
img_height = 227

###########################
# PART 1 - Creating Model #
###########################

# Creating InceptionV3 model without Fully-Connected layers
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape = (img_height, img_width, 3))

# Adding layers which will be fine-tunned
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(7, activation='softmax')(x)

# Creating final model
model = Model(inputs=base_model.input, outputs=predictions)

# …
Run Code Online (Sandbox Code Playgroud)

python machine-learning keras tensorflow transfer-learning

4
推荐指数
1
解决办法
8045
查看次数