小编gho*_* 88的帖子

具有多个输入的 Keras 序列模型

我正在制作一个 MLP 模型,它需要两个输入并产生一个输出。

I have two input arrays (one for each input) and 1 output array. The neural network has 1 hidden layer with 2 neurons. Each array has 336 elements.

model0 = keras.Sequential([
keras.layers.Dense(2, input_dim=2, activation=keras.activations.sigmoid, use_bias=True),
keras.layers.Dense(1, activation=keras.activations.relu, use_bias=True),
])

# Compile the neural network #
model0.compile(
    optimizer = keras.optimizers.RMSprop(lr=0.02,rho=0.9,epsilon=None,decay=0),
    loss = 'mean_squared_error',
    metrics=['accuracy']
)
Run Code Online (Sandbox Code Playgroud)

I tried two ways, both of them are giving errors.

model0.fit(numpy.array([array_1, array_2]),output, batch_size=16, epochs=100)
Run Code Online (Sandbox Code Playgroud)

ValueError: Error when checking input: expected dense_input to have …

python arrays keras tensorflow

17
推荐指数
2
解决办法
3万
查看次数

标签 统计

arrays ×1

keras ×1

python ×1

tensorflow ×1