我想使用 keras 构建一个 RNN 模型来对句子进行分类。
我尝试了以下代码:
docs = []
with open('all_dga.txt', 'r') as f:
for line in f.readlines():
dga_domain, _ = line.split(' ')
docs.append(dga_domain)
t = Tokenizer()
t.fit_on_texts(docs)
encoded_docs = t.texts_to_matrix(docs, mode='count')
print(encoded_docs)
Run Code Online (Sandbox Code Playgroud)
但得到了一个内存错误。似乎我无法将所有数据加载到内存中。这是输出:
Traceback (most recent call last):
File "test.py", line 11, in <module>
encoded_docs = t.texts_to_matrix(docs, mode='count')
File "/home/yurzho/anaconda3/envs/deepdga/lib/python3.6/site-packages/keras/preprocessing/text.py", line 273, in texts_to_matrix
return self.sequences_to_matrix(sequences, mode=mode)
File "/home/yurzho/anaconda3/envs/deepdga/lib/python3.6/site-packages/keras/preprocessing/text.py", line 303, in sequences_to_matrix
x = np.zeros((len(sequences), num_words))
MemoryError
Run Code Online (Sandbox Code Playgroud)
如果有人熟悉 keras,请告诉我如何预处理数据集。
提前致谢!
如果我想使用密码,我可以这样做:
`sshpass -f <(printf '%s\n' your_password) ssh user@hostname`
Run Code Online (Sandbox Code Playgroud)
但 sshpass 似乎不适用于公钥。我尝试了以下命令但失败了:
`sshpass -f <(printf '%s\n' your_passphrase) ssh -o PreferredAuthentications=publickey user@hostname`
Run Code Online (Sandbox Code Playgroud)
有什么好的办法吗?