我的应用是使用机器学习(卷积神经网络)的事故避免汽车系统.我的图像是200x100 JPG图像,输出是4个元素的数组:汽车将向左,向右,停止或向前移动.因此输出将允许一个元素1(根据应该采取的正确动作)和其他3个元素0.
我现在想要训练我的机器,以帮助它输入任何图像并独立决定动作.这是我的代码:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
import numpy as np
model = Sequential()
model.add(Convolution2D(16, 1, 1, border_mode='valid', dim_ordering='tf', input_shape=(200, 150, 1)))
model.add(Activation('relu'))
model.add(Convolution2D(16, 1, 1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25)) #Cannot take float values
model.add(Convolution2D(32, 1, 1, border_mode='valid'))
model.add(Activation('relu'))
model.add(Convolution2D(32, 1, 1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
# Note: Keras does automatic shape inference.
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
model.fit(X_train, …Run Code Online (Sandbox Code Playgroud) python machine-learning conv-neural-network keras tensorflow