这是我用来检查 convolve2d 正确性的代码
import numpy as np
from scipy.signal import convolve2d
X = np.random.randint(5, size=(10,10))
K = np.random.randint(5, size=(3,3))
print "Input's top-left corner:"
print X[:3,:3]
print 'Kernel:'
print K
print 'Hardcording the calculation of a valid convolution (top-left)'
print (X[:3,:3]*K)
print 'Sums to'
print (X[:3,:3]*K).sum()
print 'However the top-left value of the convolve2d result'
Y = convolve2d(X, K, 'valid')
print Y[0,0]
Run Code Online (Sandbox Code Playgroud)
在我的电脑上,结果如下:
Input's top-left (3x3) corner:
[[0 0 0]
[1 1 2]
[1 3 0]]
Kernel:
[[4 1 1]
[0 …Run Code Online (Sandbox Code Playgroud) 如果假设我有一个训练有素的RNN(例如语言模型),并且我想看看它自己会产生什么,我应该如何将其输出反馈给它的输入?
我阅读了以下相关问题:
理论上我很清楚,在tensorflow中我们使用截断的反向传播,所以我们必须定义我们想要"追踪"的最大步骤.我们还为批量预留了一个维度,因此如果我想训练一个正弦波,我必须[None, num_step, 1]输入输入.
以下代码有效:
tf.reset_default_graph()
n_samples=100
state_size=5
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(state_size, forget_bias=1.)
def_x = np.sin(np.linspace(0, 10, n_samples))[None, :, None]
zero_x = np.zeros(n_samples)[None, :, None]
X = tf.placeholder_with_default(zero_x, [None, n_samples, 1])
output, last_states = tf.nn.dynamic_rnn(inputs=X, cell=lstm_cell, dtype=tf.float64)
pred = tf.contrib.layers.fully_connected(output, 1, activation_fn=tf.tanh)
Y = np.roll(def_x, 1)
loss = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
opt = tf.train.AdamOptimizer().minimize(loss)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Initial state run
plt.show(plt.plot(output.eval()[0]))
plt.plot(def_x.squeeze())
plt.show(plt.plot(pred.eval().squeeze()))
steps = 1001
for i in range(steps):
p, l, _= …Run Code Online (Sandbox Code Playgroud)