我的回购中有以下内容
Master---
\
Next-->Commit A.1,Commit A.2,Commit A.3 --......
Run Code Online (Sandbox Code Playgroud)
我想将A.*提交修复为一个描述特征A的提交.我试过了git rebase -i origin next,但是这没有按照我的预期工作.有没有办法实现这个?
我想创建一个分支foo,它本质上是下一个,然后在foo下面重新绑定到merge/delete foo.但是,这似乎很草率.
我正在尝试运行测试Spark脚本,以便将Spark连接到hadoop.该脚本如下
from pyspark import SparkContext
sc = SparkContext("local", "Simple App")
file = sc.textFile("hdfs://hadoop_node.place:9000/errs.txt")
errors = file.filter(lambda line: "ERROR" in line)
errors.count()
Run Code Online (Sandbox Code Playgroud)
当我用pyspark运行时,我得到了
py4j.protocol.Py4JJavaError:调用o21.collect时发生错误.:java.io.IOException:无法将orber.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodesInternal (TokenCache.java:116)中的主Kerberos主体用作续订器,位于org.apache.hadoop.mapreduce.security.位于org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:187)的org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodes(TokenCache.java:80)中的TokenCache.obtainTokensForNamenodesInternal(TokenCache.java:100) org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:251)org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:140)at org.apache.spark.rdd.RDD $$ anonfun $ partition $ 2.apply(RDD.scala:207)at org.apache.spark.rdd.RDD $$ anonfun $ partitions $ 2.apply(RDD.scala:205)at scala.Option.getOrElse(Option.scala:120) )org.apache.spark.rdd.RDD.partitions(RDD.scala:205)atg.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28)at org.apache.spark.rdd.RDD $ $ anonfun $在org上划分$ 2.apply(RDD.scala:207).位于org.apache.spark.rdd.RDD.partitions的scala.Option.getOrElse(Option.scala:120)中的apache.spark.rdd.RDD $$ anonfun $ partitions $ 2.apply(RDD.scala:205)(RDD. scala:205)org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:46)at org.apache.spark.rdd.RDD $$ anonfun $ partitions $ 2.apply(RDD.scala:207) at org.apache.spark.rdd.RDD $$ anonfun $在org.apache.spark.rdd.RDD.partitions的scala.Option.getOrElse(Option.scala:120)处分区$ 2.apply(RDD.scala:205) (RDD.scala:205)org.apache.spark.SparkContext.runJob(SparkContext.scala:898)位于org.apache.spark的org.apache.spark.rdd.RDD.collect(RDD.scala:608). api.java.JavaRDDLike $ class.collect(JavaRDDLike.scala:243)atg.apache.spark.api.java.JavaRDD.collect(JavaRDD.scala:27)at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)at at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)at java.lang.reflect.Method.invoke …
我有一个包含各种提交的存储库,我想将其合并为两个补丁。一个补丁介绍了该功能,另一个补丁则更改了现有代码以使用该功能。问题是,当我编码和提交时,我并没有考虑到这一点,所以有些提交同时完成了这两件事。我如何拆分这些提交?
我知道我可以使用 git rebase -i 并为我想要更改的每个提交选择编辑来完成此操作,但这样我只能更改提交消息,而不能更改代码
我是java和Storm的新手所以请原谅任何明显的错误.我正在尝试使用水槽连接器运行风暴,但它崩溃时出现以下错误:
java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.codehaus.mojo.exec.ExecJavaMojo$1.run(ExecJavaMojo.java:297)
at java.lang.Thread.run(Thread.java:744)
Caused by: java.lang.ExceptionInInitializerError
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:270)
at clojure.lang.RT.loadClassForName(RT.java:2056)
at clojure.lang.RT.load(RT.java:419)
at clojure.lang.RT.load(RT.java:400)
at clojure.core$load$fn__4890.invoke(core.clj:5415)
at clojure.core$load.doInvoke(core.clj:5414)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at clojure.core$load_one.invoke(core.clj:5227)
at clojure.core$load_lib.doInvoke(core.clj:5264)
at clojure.lang.RestFn.applyTo(RestFn.java:142)
at clojure.core$apply.invoke(core.clj:603)
at clojure.core$load_libs.doInvoke(core.clj:5302)
at clojure.lang.RestFn.applyTo(RestFn.java:137)
at clojure.core$apply.invoke(core.clj:603)
at clojure.core$require.doInvoke(core.clj:5381)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at backtype.storm.cluster$loading__4784__auto__.invoke(cluster.clj:1)
at backtype.storm.cluster__init.load(Unknown Source)
at backtype.storm.cluster__init.<clinit>(Unknown Source)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Class.java:270)
at clojure.lang.RT.loadClassForName(RT.java:2056)
at clojure.lang.RT.load(RT.java:419)
at clojure.lang.RT.load(RT.java:400)
at clojure.core$load$fn__4890.invoke(core.clj:5415)
at clojure.core$load.doInvoke(core.clj:5414)
at clojure.lang.RestFn.invoke(RestFn.java:408)
at clojure.core$load_one.invoke(core.clj:5227) …Run Code Online (Sandbox Code Playgroud) 我正在尝试运行以下的FlumeEvent示例
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam
import org.apache.spark.streaming.flume.FlumeUtils
object FlumeEventCount {
def main(args: Array[String]) {
val batchInterval = Milliseconds(2000)
// Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumeEventCount")
.set("spark.cleaner.ttl","3")
val ssc = new StreamingContext(sparkConf, batchInterval)
// Create a flume stream
var stream = FlumeUtils.createStream(ssc, "192.168.1.5",3564, StorageLevel.MEMORY_ONLY_SER_2)
// Print out the count of events received from this server in each batch
stream.count().map(cnt => "Received flume events." + cnt ).print()
stream.count.print()
stream.print() …Run Code Online (Sandbox Code Playgroud) apache-spark ×2
git ×2
apache-storm ×1
flume ×1
git-amend ×1
hadoop ×1
java ×1
kerberos ×1
rebase ×1
streaming ×1