I'm using Tensorflow==2.0.0a0 and want to run the following script:
import tensorflow as tf
import tensorboard
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import tensorflow_probability as tfp
from tensorflow_model_optimization.sparsity import keras as sparsity
from tensorflow import keras
tfd = tfp.distributions
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
model = tf.keras.Sequential([
tf.keras.layers.Dense(1,kernel_initializer='glorot_uniform'),
tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1))
])
Run Code Online (Sandbox Code Playgroud)
All my older notebooks work with TF 1.13. However, I want to develop a notebook where I use …
我正在Keras中设置学习速率调度程序,使用历史记录丢失作为self.model.optimizer.lr的更新程序,但self.model.optimizer.lr上的值未插入SGD优化程序且优化程序是使用dafault学习率.代码是:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = []
self.model.optimizer.lr=3
def on_batch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
self.model.optimizer.lr=lr-10000*self.losses[-1]
def base_model():
model=Sequential()
model.add(Dense(4, input_dim=2, init='uniform'))
model.add(Dense(1, init='uniform'))
sgd = SGD(decay=2e-5, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error',optimizer=sgd,metrics['mean_absolute_error'])
return model
history=LossHistory()
estimator = KerasRegressor(build_fn=base_model,nb_epoch=10,batch_size=16,verbose=2,callbacks=[history])
estimator.fit(X_train,y_train,callbacks=[history])
res = estimator.predict(X_test)
Run Code Online (Sandbox Code Playgroud)
使用Keras作为连续变量的回归量,一切正常,但我想通过更新优化器学习率来达到更小的导数.
我有以下问题:
在英语语言中,我的代码使用 Gensim 生成了成功的词嵌入,考虑到余弦距离,相似的短语彼此接近:
“响应时间和错误测量”和“用户感知响应时间与错误测量的关系”之间的夹角很小,因此它们是集合中最相似的短语。
但是,当我在葡萄牙语中使用相同的短语时,它不起作用:
我的代码如下:
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import matplotlib.pyplot as plt
from gensim import corpora
documents = ["Interface máquina humana para aplicações computacionais de laboratório abc",
"Um levantamento da opinião do usuário sobre o tempo de resposta do sistema informático",
"O sistema de gerenciamento de interface do usuário EPS",
"Sistema e testes de engenharia de sistemas humanos de EPS",
"Relação do tempo de resposta percebido pelo usuário para a medição de erro", …Run Code Online (Sandbox Code Playgroud) 我正在创建自己的 Docker 映像,以便可以在 AWS SageMaker 中使用自己的模型。我使用自定义 Dockerfile 在 SageMaker ml.t2.medium 实例中的 Jupyter Notebook 内使用命令行成功创建了 Docker 映像:
REPOSITORY TAG IMAGE ID CREATED SIZE
sklearn latest 01234212345 6 minutes ago 1.23GB
Run Code Online (Sandbox Code Playgroud)
但是当我在 Jupyter 中运行时:
! aws ecr create-repository --repository-name sklearn
Run Code Online (Sandbox Code Playgroud)
我收到以下错误:
An error occurred (AccessDeniedException) when calling the CreateRepository operation: User: arn:aws:sts::1234567:assumed-role/AmazonSageMaker-ExecutionRole-12345/SageMaker is not authorized to perform: ecr:CreateRepository on resource: *
Run Code Online (Sandbox Code Playgroud)
我已经为 EC2Container 设置了 SageMaker、EC2、EC2ContainerService 权限和以下策略,但仍然遇到相同的错误。
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:*",
"ec2:*"
],
"Resource": "*"
} …Run Code Online (Sandbox Code Playgroud) amazon-web-services scikit-learn docker dockerfile amazon-sagemaker
python ×3
docker ×1
dockerfile ×1
gensim ×1
keras ×1
nlp ×1
nltk ×1
optimization ×1
scikit-learn ×1
tensorflow ×1
tf.keras ×1