我很难理解 Spark 中的循环分区。考虑以下示例。我将大小为 3 的 Seq 拆分为 3 个分区:
val df = Seq(0,1,2).toDF().repartition(3)
df.explain
== Physical Plan ==
Exchange RoundRobinPartitioning(3)
+- LocalTableScan [value#42]
Run Code Online (Sandbox Code Playgroud)
现在,如果我检查分区,我会得到:
df
.rdd
.mapPartitionsWithIndex{case (i,rows) => Iterator((i,rows.size))}
.toDF("partition_index","number_of_records")
.show
+---------------+-----------------+
|partition_index|number_of_records|
+---------------+-----------------+
| 0| 0|
| 1| 2|
| 2| 1|
+---------------+-----------------+
Run Code Online (Sandbox Code Playgroud)
如果我对大小为 8 的 Seq 执行相同操作并将其拆分为 8 个分区,则会出现更严重的偏差:
(0 to 7).toDF().repartition(8)
.rdd
.mapPartitionsWithIndex{case (i,rows) => Iterator((i,rows.size))}
.toDF("partition_index","number_of_records")
.show
+---------------+-----------------+
|partition_index|number_of_records|
+---------------+-----------------+
| 0| 0|
| 1| 0|
| 2| 0|
| 3| 0|
| 4| 0| …Run Code Online (Sandbox Code Playgroud) 我在 Spark 2.4.4 中使用带有大窗口的窗口函数,例如。
Window
.partitionBy("id")
.orderBy("timestamp")
Run Code Online (Sandbox Code Playgroud)
在我的测试中,我有大约 70 个不同的 ID,但我可能有大约 200 000 行 ID。如果没有进一步的配置,我必须为我的执行器分配大量内存以避免这种 OOM:
org.apache.spark.memory.SparkOutOfMemoryError: Unable to acquire 16384 bytes of memory, got 0
at org.apache.spark.memory.MemoryConsumer.throwOom(MemoryConsumer.java:157)
at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:98)
at org.apache.spark.util.collection.unsafe.sort.UnsafeInMemorySorter.<init>(UnsafeInMemorySorter.java:128)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.<init>(UnsafeExternalSorter.java:161)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:128)
at org.apache.spark.sql.execution.ExternalAppendOnlyUnsafeRowArray.add(ExternalAppendOnlyUnsafeRowArray.scala:115)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11$$anon$1.fetchNextPartition(WindowExec.scala:345)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11$$anon$1.next(WindowExec.scala:371)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11$$anon$1.next(WindowExec.scala:303)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage15.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$12$$anon$1.hasNext(WholeStageCodegenExec.scala:631)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11$$anon$1.fetchNextRow(WindowExec.scala:314)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11$$anon$1.<init>(WindowExec.scala:323)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11.apply(WindowExec.scala:303)
at org.apache.spark.sql.execution.window.WindowExec$$anonfun$11.apply(WindowExec.scala:302)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:801)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
Run Code Online (Sandbox Code Playgroud)
查看源代码,我发现了这个参数,根本没有记录:
spark.sql.windowExec.buffer.in.memory.threshold
Run Code Online (Sandbox Code Playgroud)
给它一个大的尺寸(例如1.000.000),我不再需要那么多的内存。据我了解,这是缓冲的行数;我想增加这个参数不会重复执行程序内存中的行,但这对我来说并不是很清楚。
有人可以准确地解释一下窗口是如何在执行器端处理的吗?为什么数据会重复?如何避免这种重复并使过程更快,每个窗口中有许多行?可以使用哪些参数?
谢谢。
下面的代码不能编译,它说 ActorMaterializer 缺少一个隐式的 ActorRefFactory。我该如何提供?
val guardian: Behavior[Done] = Behaviors.setup(_ => {
Behaviors.receiveMessage{
case Done => Behaviors.stopped
}
})
implicit val sys = ActorSystem(guardian, "sys")
implicit val materializer: Materializer = ActorMaterializer()
Run Code Online (Sandbox Code Playgroud)