小编S.H*_*S.H的帖子

使用交叉验证评估Logistic回归

我想使用交叉验证来测试/训练我的数据集,并评估逻辑回归模型在整个数据集上的性能,而不仅仅是在测试集上(例如25%).

这些概念对我来说是全新的,我不确定它是否做得对.如果有人能告诉我正确的步骤,我会在错误的地方采取行动,我将不胜感激.我的部分代码如下所示.

另外,如何在当前图形的同一图形上绘制"y2"和"y3"的ROC?

谢谢

import pandas as pd 
Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo')
feature_cols=['A','B','C','D','E']
X=Data[feature_cols]

Y=Data['Status'] 
Y1=Data['Status1']  # predictions from elsewhere
Y2=Data['Status2'] # predictions from elsewhere

from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

from sklearn import metrics, cross_validation
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
metrics.accuracy_score(y, predicted) 

from sklearn.cross_validation import cross_val_score
accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy')
print (accuracy)
print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean())

from nltk import ConfusionMatrix 
print (ConfusionMatrix(list(y), list(predicted)))
#print …
Run Code Online (Sandbox Code Playgroud)

python scikit-learn cross-validation logistic-regression

8
推荐指数
1
解决办法
3万
查看次数