小编이도엽*_*이도엽的帖子

ConcatOp:输入的尺寸应匹配

我正在使用张量流和python开发深度学习模型:

  • 首先,使用CNN图层获取要素。
  • 其次,重塑功能图,我想使用LSTM层。

但是,尺寸不匹配的错误...

ConcatOp:输入的尺寸应匹配:shape[0] = [71,48]vs.shape[1] = [1200,24]

W_conv1 = weight_variable([1,conv_size,1,12])
b_conv1 = bias_variable([12])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+ b_conv1)
h_pool1 = max_pool_1xn(h_conv1)

W_conv2 = weight_variable([1,conv_size,12,24])
b_conv2 = bias_variable([24])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_1xn(h_conv2)

W_conv3 = weight_variable([1,conv_size,24,48])
b_conv3 = bias_variable([48])

h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_1xn(h_conv3)


print(h_pool3.get_shape())
h3_rnn_input = tf.reshape(h_pool3, [-1,x_size/8,48])

num_layers = 1
lstm_size = 24
num_steps = 4

lstm_cell = tf.nn.rnn_cell.LSTMCell(lstm_size, initializer = tf.contrib.layers.xavier_initializer(uniform = False))
cell = …
Run Code Online (Sandbox Code Playgroud)

python deep-learning lstm tensorflow

5
推荐指数
1
解决办法
6236
查看次数

标签 统计

deep-learning ×1

lstm ×1

python ×1

tensorflow ×1