我有简单的seq2seq模型:
import seq2seq
import numpy as np
import keras.backend as K
from seq2seq.models import Seq2Seq
from keras.models import Model
from keras.models import Sequential
from keras.layers import Embedding, Input, TimeDistributed, Activation
BLOCK_LEN = 60
EVENTS_CNT = 462
input = Input((BLOCK_LEN,))
embedded = Embedding(input_dim=EVENTS_CNT+1, output_dim=200)(input)
emb_model = Model(input, embedded)
seq_model = Seq2Seq(batch_input_shape=(None, BLOCK_LEN, 200), hidden_dim=200, output_length=BLOCK_LEN, output_dim=EVENTS_CNT)
model = Sequential()
model.add(emb_model)
model.add(seq_model)
model.add(TimeDistributed(Activation('softmax')))
model.summary()
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
model_1 (Model) (None, 60, 200) 92600
_________________________________________________________________
model_12 (Model) (None, …Run Code Online (Sandbox Code Playgroud) 我开始学习Spring Boot,但遇到了问题。我有以下代码:
@RestController
public class UserController {
@RequestMapping("/")
public String getMessageInfo(Message message) {
return "Id is " + message.getId() + ", message is " + message.getMessage() + ", parameter good is " + message.isGood();
}
}
Run Code Online (Sandbox Code Playgroud)
类消息:
public class Message {
private String message;
private int id;
private boolean good;
public Message() {}
public Message(int id) {this.id = id;}
public Message(String message) {this.message = message;}
public Message(boolean good) {this.good = good;}
public Message(String message, boolean good, int id) {
this.message …Run Code Online (Sandbox Code Playgroud) 你能解释一下我之间的区别吗?
i.compareAndSet(i.get(), i.get() + 1)
Run Code Online (Sandbox Code Playgroud)
和
int s = i.get();
int nextS = s + 1;
i.compareAndSet(s, nextS);
Run Code Online (Sandbox Code Playgroud)
这里i是一个AtomicInteger.我是对的,如果我想获得增量值,第一种方式是错误的i吗?但我无法解释原因.
java ×2
atomic ×1
keras ×1
metrics ×1
python ×1
spring ×1
spring-boot ×1
spring-mvc ×1
tensorflow ×1