我想要为包含我的OneClassSVM分类器的训练语料库的txt文件进行矢量化.为此,我正在使用scikit-learn库中的CountVectorizer.这是我的代码:
def file_to_corpse(file_name, stop_words):
array_file = []
with open(file_name) as fd:
corp = fd.readlines()
array_file = np.array(corp)
stwf = stopwords.words('french')
for w in stop_words:
stwf.append(w)
vectorizer = CountVectorizer(decode_error = 'replace', stop_words=stwf, min_df=1)
X = vectorizer.fit_transform(array_file)
return X
Run Code Online (Sandbox Code Playgroud)
当我在我的文件上运行我的函数(大约206346行)时,我得到以下错误,我似乎无法理解它:
Traceback (most recent call last):
File "svm.py", line 93, in <module>
clf_svm.fit(training_data)
File "/home/imane/anaconda/lib/python2.7/site-packages/sklearn/svm/classes.py", line 1028, in fit
super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight,
File "/home/imane/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py", line 122, in _num_samples
" a valid collection." % x)
TypeError: Singleton array array(<536172x13800 sparse matrix of type …Run Code Online (Sandbox Code Playgroud) python machine-learning vectorization python-2.7 scikit-learn