我正在尝试将一些数据拟合到一个非线性函数中,并希望使用模型函数来查看是否可以得到比现有函数更好的拟合。在尝试解决问题时,我提出了更多问题。我有:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from scipy.optimize import curve_fit
temperature = [ 38., 40., 42., 44., 46., 48., 50., 52., 54., 56., 58., 60., 62., 64., 66., 68., 70., 71.9, 73.81, 75.69, 77.6, 79.49, 81.38, 83.29, 85.19, 87.11, 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100. ]
exp_rate = [ 8.71171203e-01, 1.15342914e+00, 1.39178845e+00, 1.66700007e+00, 1.96267002e+00, 2.32390602e+00, 2.68542886e+00, 3.13116448e+00, 3.60152705e+00, 4.12575295e+00, 4.67617489e+00, 5.29745193e+00, 6.06796117e+00, 6.99056274e+00, 8.40124338e+00, 1.04449551e+01, 1.38236107e+01, 1.96811651e+01, …Run Code Online (Sandbox Code Playgroud)