背景:
由于Keras运行在TensorFlow之上,因此对TensorFlow进行了标记,这更是一个普遍的深度学习问题。
我一直在研究Kaggle Digit Recognizer问题,并使用Keras训练了该任务的CNN模型。下面的模型具有我用于本次比赛的原始CNN结构,并且效果还不错。
def build_model1():
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), padding="Same" activation="relu", input_shape=[28, 28, 1]))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(64, (3, 3), padding="Same", activation="relu"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(64, (3, 3), padding="Same", activation="relu"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(10, activation="softmax"))
return model
Run Code Online (Sandbox Code Playgroud)
然后,我在Kaggle上阅读了一些其他笔记本,并借用了另一个CNN结构(复制如下),该结构比上面的结构好得多,因为它具有更好的准确性,更低的错误率,并且在过度拟合训练数据之前花费了更多的时间。
def build_model2():
model = models.Sequential()
model.add(layers.Conv2D(32, (5, 5),padding ='Same', activation='relu', input_shape = (28, 28, 1)))
model.add(layers.Conv2D(32, (5, 5),padding = 'Same', activation ='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Conv2D(64,(3, 3),padding = 'Same', activation ='relu'))
model.add(layers.Conv2D(64, (3, …
Run Code Online (Sandbox Code Playgroud) Edit 1: Another person reported similar issue with asdf.
Edit 2: Another reported similar issue.
Edit 3: I uninstalled rvm
, installed rvm
, installed ruby
and rails
, and attempted some activities.
Edit 4: Another person mentioned that it's caused by the line I put into .zshrc
(or .bash_profile/.bashrc
):
RUBYOPT: "-W:no-deprecated -W:no-experimental"
.
Problem: I have two projects, one using ruby-2.7.0
, the other using ruby-2.6.5
.
Every time I installed over two versions of ruby, only …