无法从 scipy 模块导入函数。
给出错误:
from scipy.signal.signaltools import _centered
Cannot import name '_centered' from 'scipy.signal.signaltools'
scipy.__version__
1.8.0
Run Code Online (Sandbox Code Playgroud) 使用oauth2从Twitter获取数据,但得到的错误为:
必须在散列之前对Unicode对象进行编码
使用下面的代码,
def oauth_req(url, key, secret, http_method="GET", post_body="",http_headers=None):
consumer = oauth2.Consumer(key=API_KEY, secret=API_SECRET)
token = oauth2.Token(key=key, secret=secret)
client = oauth2.Client(consumer, token)
resp, content = client.request(url, method=http_method, body=post_body, headers=http_headers)
return content
data = oauth_req(url, TOKEN_KEY, TOKEN_SECRET)
Run Code Online (Sandbox Code Playgroud)
还尝试了我传递给def的变量的utf8编码值.
File "<pyshell#11>", line 1, in <module>
data = oauth_req(url, TOKEN_KEY, TOKEN_SECRET)
File "<pyshell#8>", line 6, in oauth_req
body=post_body, headers=http_headers)
File "C:\Python35-32\lib\site-packages\oauth2_init_.py", line 673, in request
req.sign_request(self.method, self.consumer, self.token)
File "C:\Python35-32\lib\site-packages\oauth2_init_.py", line 493, in sign_request
self['oauth_body_hash'] = base64.b64encode(sha1(self.body).digest())
TypeError: Unicode-objects must be encoded before hashing
Run Code Online (Sandbox Code Playgroud) 我有一个 CSV,它有三个不同的分隔符,即 '|'、',' 和 ';' 不同列之间。
我如何使用 Python 解析这个 CSV ?
我的数据如下:
2017-01-24|05:19:30+0000|TRANSACTIONDelim_secondUSER_LOGINDelim_firstCONSUMERIDDelim_secondc4115f53-3798-4c9e-9bfd-506c842aff96Delim_firstTRANSACTIONDATEDelim_second17-01-24 05:19:30Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondnullDelim_firstAIRINGDATEDelim_second|**
2017-01-24|05:19:30+0000|TRANSACTIONDelim_secondUSER_LOGOUTDelim_firstCONSUMERIDDelim_second1583e83882b8e7Delim_firstTRANSACTIONDATEDelim_second17-01-24 05:19:26Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondbu002Delim_firstAIRINGDATEDelim_second24-Jan-2017|**
2017-01-24|05:21:59+0000|TRANSACTIONDelim_secondVIEW_PRIVACY_POLICYDelim_firstCONSUMERIDDelim_secondnullDelim_firstTRANSACTIONDATEDelim_second17-01-24 05:21:59Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondnullDelim_firstAIRINGDATEDelim_second|**
2017-01-24|05:59:25+0000|TRANSACTIONDelim_secondUSER_LOGOUTDelim_firstCONSUMERIDDelim_second1586a2aa4bc18fDelim_firstTRANSACTIONDATEDelim_second17-01-24 05:59:21Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondbu002Delim_firstAIRINGDATEDelim_second24-Jan-2017|**
2017-01-24|05:59:36+0000|TRANSACTIONDelim_secondUSER_LOGOUTDelim_firstCONSUMERIDDelim_second1583e83882b8e7Delim_firstTRANSACTIONDATEDelim_second17-01-24 05:59:31Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondbu002Delim_firstAIRINGDATEDelim_second24-Jan-2017|**
2017-01-24|06:04:25+0000|TRANSACTIONDelim_secondUSER_LOGOUTDelim_firstCONSUMERIDDelim_secondc4115f53-3798-4c9e-9bfd-506c842aff96Delim_firstTRANSACTIONDATEDelim_second17-01-24 06:04:24Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondbu002Delim_firstAIRINGDATEDelim_second|**
2017-01-24|06:05:07+0000|TRANSACTIONDelim_secondUSER_LOGINDelim_firstCONSUMERIDDelim_secondc4115f53-3798-4c9e-9bfd-506c842aff96Delim_firstTRANSACTIONDATEDelim_second17-01-24 06:05:07Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondnullDelim_firstAIRINGDATEDelim_second|**
2017-01-24|06:05:07+0000|TRANSACTIONDelim_secondUSER_LOGINDelim_firstCONSUMERIDDelim_secondc4115f53-3798-4c9e-9bfd-506c842aff96Delim_firstTRANSACTIONDATEDelim_second17-01-24 06:05:07Delim_firstCHANNELIDDelim_secondDelim_firstSHOWIDDelim_secondDelim_firstEPISODEIDDelim_secondDelim_firstBUSINESSUNITDelim_secondbu002Delim_firstAIRINGDATEDelim_second|**
Run Code Online (Sandbox Code Playgroud) 我正在使用 Windows 批处理文件调用 Pentaho 数据集成作业,间歇性地,该作业无限期挂起。
Pentaho 日志中的错误信息如下:
06:43:37,951 ERROR [BlueprintContainerImpl] Unable to start blueprint container for bundle pdi-dataservice-server-plugin due to unresolved dependencies [(objectClass=org.pentaho.metaverse.api.ILineageClient)]
java.util.concurrent.TimeoutException
at org.apache.aries.blueprint.container.BlueprintContainerImpl$1.run(BlueprintContainerImpl.java:336)
at org.apache.aries.blueprint.utils.threading.impl.DiscardableRunnable.run(DiscardableRunnable.java:48)
at java.util.concurrent.Executors$RunnableAdapter.call(Unknown Source)
at java.util.concurrent.FutureTask.run(Unknown Source)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(Unknown Source)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
Run Code Online (Sandbox Code Playgroud)
我能够在类似的行中找到一些问题,这表明这是一个缓存问题。请帮忙 !
我正在创建两个 S4 类,其中 Employee 类继承自另一个 Person 类。
\n\n这两个类的定义如下:
\n\nsetClass("Person", slots = list(name="character", age="numeric"))\n\nsetClass("Employee", slots = list(boss="Person"))\n
Run Code Online (Sandbox Code Playgroud)\n\n我正在为这两个类创建一个实例,
\n\nalice <- new("Person", name="Alice", age = 40)\n
Run Code Online (Sandbox Code Playgroud)\n\n这效果很好,但是当我尝试使用以下命令创建 Employee 实例时:
\n\njohn <- new("Employee", name = "John", age = 20, boss= alice)\n
Run Code Online (Sandbox Code Playgroud)\n\n它给出的错误如下:
\n\nError in initialize(value, ...) : \n invalid names for slots of class \xe2\x80\x9cEmployee\xe2\x80\x9d: name, age\n
Run Code Online (Sandbox Code Playgroud)\n\n我不能以这种方式创建对象吗?
\n尝试为基于文本的多标签分类问题训练单层神经网络。
model= Sequential()
model.add(Dense(20, input_dim=400, kernel_initializer='he_uniform', activation='relu'))
model.add(Dense(9, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam')
model.fit(x_train, y_train, verbose=0, epochs=100)
Run Code Online (Sandbox Code Playgroud)
收到错误为:
ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray).
Run Code Online (Sandbox Code Playgroud)
x_train 是一个 300 维的 word2vec 矢量化文本数据,每个实例填充到 400 长度。包含 462 条记录。
对训练数据的观察如下:
print('#### Shape of input numpy array #####')
print(x_train.shape)
print('#### Shape of each element in the array #####')
print(x_train[0].shape)
print('#### Object type for input data #####')
print(type(x_train))
print('##### Object type for first element of input data ####')
print(type(x_train[0]))
#### Shape …
Run Code Online (Sandbox Code Playgroud) 我正在使用以下 Curl 请求:
curl -s -X POST -H "Content-Type: application/json" --data-binary @request.json https://speech.googleapis.com/v1/speech:recognize?key=**************************
Run Code Online (Sandbox Code Playgroud)
它给了我如下错误:
Anonymous caller does not have storage.objects.get access to g_stt/abc.flac
Run Code Online (Sandbox Code Playgroud) 我有一个脚本如下:
#!/bin/bash
if [ -z "$1" ]; then
echo "Missing output folder name"
exit 1
fi
split -l 10000 --additional-suffix=.ordtmp orders.txt orders
for f in `ls *.ordtmp`; do
if [ "$2" == "local" ]; then
mv $f $1
else
hdfs dfs -copyFromLocal $f $1
rm -f $f
fi
sleep 3
done
Run Code Online (Sandbox Code Playgroud)
当我尝试运行它时,出现以下错误:
(base) 01HW993798:ch06 tcssig$ ./splitAndSend.sh
Missing output folder name
Run Code Online (Sandbox Code Playgroud)
文件是否期望在运行时提及输出文件夹?