我有一个包含许多图像的数据集,其中图像具有同一类的 5 倍放大倍数(x10、x20、x30、x40、x50),但它们不是序列数据,并且所有图像都处于 RGB 模式,大小为 512x512,我想要把这 5 张图像作为 CNN 的输入,我不知道怎么做。另外,还有一个问题是,一旦模型在 5 个图像管道上得到了很好的训练,当我只有一张图像(一个放大倍数,以 x10 为例)时,它可以工作吗?
machine-learning computer-vision deep-learning conv-neural-network tensorflow
当我尝试保存我的 MobileNet 模型时出现此错误。
Traceback (most recent call last): File "../src/script.py", line 150, in <module> callbacks=[cb_checkpointer, cb_early_stopper] File "/opt/conda/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs) File "/opt/conda/lib/python3.6/site-packages/keras/engine/training.py", line 1418, in fit_generator
initial_epoch=initial_epoch) File "/opt/conda/lib/python3.6/site-packages/keras/engine/training_generator.py", line 264, in fit_generator
callbacks.on_train_end() File "/opt/conda/lib/python3.6/site-packages/keras/callbacks.py", line 142, in on_train_end callback.on_train_end(logs) File "/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/callbacks.py", line 940, in on_train_end
if self.model._ckpt_saved_epoch is not None: AttributeError: 'Sequential' object has no attribute '_ckpt_saved_epoch'
Run Code Online (Sandbox Code Playgroud)
我正在使用回调进行保存:
filepath="weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"
cb_early_stopper = EarlyStopping(monitor = 'val_loss', mode='min', verbose=1, patience = EARLY_STOP_PATIENCE)
cb_checkpointer = ModelCheckpoint(filepath = …Run Code Online (Sandbox Code Playgroud) deep-learning conv-neural-network keras tensorflow mobilenet
我正在寻找向后和向前链接的算法来用 Python 实现它。我在网上查了一下,但我没有找到太多。我也查看了维基百科,但我只是找到了一些规则,但没有找到算法。