小编Mal*_*rec的帖子

使用高级tf.layers时添加L2正则化

在使用tf.layers中定义的层时,是否可以添加L2正则化?

在我看来,由于tf.layers是一个高级包装器,因此没有简单的方法来访问过滤器权重.

使用tf.nn.conv2d

regularizer = tf.contrib.layers.l2_regularizer(scale=0.1)

weights = tf.get_variable(
    name="weights",
    regularizer=regularizer
)

#Previous layers

...

#Second layer 
layer 2 = tf.nn.conv2d(
input,
weights,
[1,1,1,1],
[1,1,1,1])

#More layers
...

#Loss
loss = #some loss

reg_variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_term = tf.contrib.layers.apply_regularization(regularizer, reg_variables)
loss += reg_term
Run Code Online (Sandbox Code Playgroud)

现在用tf.layers.conv2d会是什么样子?

谢谢!

tensorflow

28
推荐指数
2
解决办法
2万
查看次数

如何在tf.layers中使用张量板?

由于没有明确定义权重,我如何将它们传递给摘要编写器?

举个例子:

conv1 = tf.layers.conv2d(
    tf.reshape(X,[FLAGS.batch,3,160,320]),
    filters = 16,
    kernel_size = (8,8),
    strides=(4, 4),
    padding='same',
    kernel_initializer=tf.contrib.layers.xavier_initializer(),
    bias_initializer=tf.zeros_initializer(),
    kernel_regularizer=None,
    name = 'conv1',
    activation = tf.nn.elu
    )
Run Code Online (Sandbox Code Playgroud)

=>

summarize_tensor(
    ??????
)
Run Code Online (Sandbox Code Playgroud)

谢谢!

tensorflow tensorboard

4
推荐指数
2
解决办法
1934
查看次数

标签 统计

tensorflow ×2

tensorboard ×1