我试图在 SegNet 模型上运行预测,但是当它调用预测函数时,我收到了一个错误。
我也尝试使用 运行预测with tf.device('/cpu:0'):,但我收到了同样的错误
if __name__ == '__main__':
# path to the model
model = tf.keras.models.load_model('segnet_weightsONNXbackToKeras3.h5')
model.compile(loss='categorical_crossentropy', optimizer='RMSprop', metrics=['accuracy'])
model.summary()
input_shape = [None, 360, 480, 3]
output_shape = [None, 352, 480, 20]
img = cv2.imread('test4.jpg')
input_image = img
img = cv2.resize(img, (input_shape[2], input_shape[1]))
img = np.reshape(img, [1, input_shape[1], input_shape[2], input_shape[3]])
if normalize:
img = img.astype('float32') / 255
model.summary()
classes = model.predict(img)[0]
colors = []
for i in range(output_shape[3]):
colors.append(generate_color())
maxMatrix = np.amax(classes, axis=2)
prediction = np.zeros((output_shape[1], …Run Code Online (Sandbox Code Playgroud)